Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Drug Metab Pharmacokinet ; 49(3): 343-353, 2024 May.
Article in English | MEDLINE | ID: mdl-38472634

ABSTRACT

BACKGROUND AND OBJECTIVE: In vitro glucuronidation of 17ß-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS: The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS: In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION: Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.


Subject(s)
Dimethyl Sulfoxide , Estradiol , Ethanol , Glucuronides , Glucuronosyltransferase , Microsomes, Liver , Solvents , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Estradiol/metabolism , Estradiol/pharmacology , Glucuronosyltransferase/metabolism , Humans , Solvents/pharmacology , Animals , Kinetics , Ethanol/metabolism , Ethanol/pharmacology , Glucuronides/metabolism , Dimethyl Sulfoxide/pharmacology , Methanol/pharmacology , Methanol/metabolism , Acetonitriles/pharmacology , Acetonitriles/metabolism
2.
Xenobiotica ; 53(3): 215-222, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37039301

ABSTRACT

BCRP (breast cancer resistance protein) is a crucial efflux transporter involved in the regulation of the pharmacokinetics and pharmacodynamics of a wide range of drugs. Herein, we aimed to investigate a potential role for the nuclear receptor REV-ERBα in the regulation of BCRP expression and sulfasalazine (a BCRP probe substrate) pharmacokinetics.Regulation of BCRP expression by REV-ERBα was assessed using Rev-erbα-/- mice and AML12 and CT26 cells. Pharmacokinetic analysis was performed with Rev-erbα-/- and wild-type mice after sulfasalazine administration.We found that the expression levels of BCRP mRNA and protein were downregulated in the liver and small intestine of Rev-erbα-dificient mice. In line with this, Rev-erbα ablation increased the systemic exposures of oral sulfasalazine.Positive regulation of BCRP expression and function by REV-ERBα was furtherly confirmed in AML12 and CT26 cells. Moreover, indirect regulation of Bcrp expression by REV-ERBα was potentially mediated by a negative transcription factor DEC2, which is a downstream target of REV-ERBα.In conclusion, REV-ERBα positively regulates BCRP expression in mice, thereby affecting sulfasalazine pharmacokinetics.


Subject(s)
Neoplasm Proteins , Sulfasalazine , Mice , Animals , Sulfasalazine/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Neoplasm Proteins/genetics , Gene Expression Regulation , Receptors, Cytoplasmic and Nuclear
SELECTION OF CITATIONS
SEARCH DETAIL
...