Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Bioinspir Biomim ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722349

ABSTRACT

This study aims to investigate the feasibility of using an Artificial Lateral Line system for predicting the real-time position and pose of an undulating swimmer with Carangiform swimming patterns. We established a 3D Computational Fluid Dynamics simulation to replicate the swimming dynamics of a freely swimming mackerel under various motion parameters, calculating the corresponding pressure fields. Using the simulated lateral line data, we trained an artificial neural network to predict the centroid coordinates and orientation of the swimmer. A comprehensive analysis was further conducted to explore the impact of sensor quantity, distribution, noise amplitude and sampling intervals of the Artificial Lateral Line array on predicting performance. Additionally, to quantitatively assess the reliability of the localization network, we trained another neural network to evaluate error magnitudes for different input signals. These findings provide valuable insights for guiding future research on mutual sensing and schooling in underwater robotic fish.

3.
J Nanobiotechnology ; 22(1): 66, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368393

ABSTRACT

BACKGROUND: The transplantation of exosomes derived from human adipose-derived mesenchymal stem cells (hADSCs) has emerged as a prospective cellular-free therapeutic intervention for the treatment of neurodevelopmental disorders (NDDs), as well as autism spectrum disorder (ASD). Nevertheless, the efficacy of hADSC exosome transplantation for ASD treatment remains to be verified, and the underlying mechanism of action remains unclear. RESULTS: The exosomal long non-coding RNAs (lncRNAs) from hADSC and human umbilical cord mesenchymal stem cells (hUCMSC) were sequenced and 13,915 and 729 lncRNAs were obtained, respectively. The lncRNAs present in hADSC-Exos encompass those found in hUCMSC-Exos and are associated with neurogenesis. The biodistribution of hADSC-Exos in mouse brain ventricles and organoids was tracked, and the cellular uptake of hADSC-Exos was evaluated both in vivo and in vitro. hADSC-Exos promote neurogenesis in brain organoid and ameliorate social deficits in ASD mouse model BTBR T + tf/J (BTBR). Fluorescence in situ hybridization (FISH) confirmed lncRNA Ifngas1 significantly increased in the prefrontal cortex (PFC) of adult mice after hADSC-Exos intraventricular injection. The lncRNA Ifngas1 can act as a molecular sponge for miR-21a-3p to play a regulatory role and promote neurogenesis through the miR-21a-3p/PI3K/AKT axis. CONCLUSION: We demonstrated hADSC-Exos have the ability to confer neuroprotection through functional restoration, attenuation of neuroinflammation, inhibition of neuronal apoptosis, and promotion of neurogenesis both in vitro and in vivo. The hADSC-Exos-derived lncRNA IFNG-AS1 acts as a molecular sponge and facilitates neurogenesis via the miR-21a-3p/PI3K/AKT signaling pathway, thereby exerting a regulatory effect. Our findings suggest a potential therapeutic avenue for individuals with ASD.


Subject(s)
Autism Spectrum Disorder , Exosomes , Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , Humans , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Exosomes/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Autism Spectrum Disorder/metabolism , In Situ Hybridization, Fluorescence , Phosphatidylinositol 3-Kinases/metabolism , Prospective Studies , Tissue Distribution , Neurogenesis , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Interferon-gamma/metabolism
4.
RSC Adv ; 13(38): 26995-27005, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37692350

ABSTRACT

Iron oxides with advanced functional properties show great potential for applications in the fields of water splitting, drug delivery, sensors, batteries and supercapacitors. However, it is challenging to develop a simple and efficient strategy for fabricating patterned iron oxide based electrodes for supercapacitor applications. Herein, a facile, simple, scalable, binder-free, surfactant-free and conductive additive-free electric discharge rusting (EDR) technique is proposed to directly synthesize Fe1-xO oxide layer on a pure iron substrate. This new EDR strategy is successfully adopted to fabricate Fe-Fe1-xO integrative patterned electrodes and coplanar microsupercapacitors (CMSC) in one step. The CMSC devices with different geometries could be directly patterned by EDR, which is automatically controlled by a computer numerical control system. The fabricated Fe-Fe1-xO based 3D 2F-CMSC exhibits a maximum areal specific capacitance of 112.4 mF cm-2. Another important finding is the fabrication of 3D 2F-CMSC devices, which show good capacitive behavior at an ultra high scanning rate of 20 000 mV s-1. The results prove that EDR is a low-cost and versatile strategy for the scalable fabrication of high-performance patterned supercapacitor integrative electrodes and devices. Furthermore, it is a versatile technique which shows a great potential for development of next generation microelectronic devices, such as microbatteries and microsensors.

5.
Sci Total Environ ; 902: 166065, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37544445

ABSTRACT

Carbonation technology resolves the volume expansion of steel slag by combining CO2 with f-CaO, but the previous stringent carbonation conditions (99%vol) significantly limit the application prospect of steel slag. To achieve the carbonation of steel slag at lower CO2 concentrations, a novel cold-bonded artificial aggregates (CASSAs) based on steel slag and biochar is produced in this paper. The carbon capture capacities of CASSAs with different biochar contents (5 wt%, 10 wt%, and 15 wt%) are investigated in a low-CO2 concentration environment (10.79 % vol) and natural environment using the porosity and CO2 adsorption capacity of biochar. The changes in the performance of CASSAs before and after carbonation are investigated at different curing ages (7 d and 28 d). The results reveal that biochar increases the pores of the CASSAs. At 7 d, B15 achieves complete carbonation at low concentrations and can uptake 6.5 wt% of CO2. CO2 adsorption capacity by biochar in the natural environment facilitates the diffusion of CO2 in CASSAs. Regarding mechanical properties, the addition of biochar makes B15 at 7 d half as strong as B0, but B15 exhibits long-term strength development. B15 at 7 d has a strength of 8.49 MPa after carbonation, which is almost the same as B0. In addition, B15 achieves a net CO2 emission of -39.9 kg/ton. This study combines biochar with CASSAs to provide a potential method to carbonate steel slag at low CO2 concentrations. A new methodology was also used to quantitatively assess the ability of biochar CASSAs to solidify CO2 under low concentration conditions and natural environments from a macroscopic perspective. Biochar CASSAs have great potential to realize resource utilization and carbon capture from steel slag.

6.
Waste Manag ; 171: 86-94, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37651945

ABSTRACT

In previous studies, municipal solid waste incineration bottom ash (MSWIBA) exhibited low compressive strength when made into geopolymer materials due to the lack of active Ca. The introduction of steel slag (SS) not only supplements MSWIBA with active Ca, but also enables further treatment of SS, an underutilized solid waste. In this study, mechanical properties, XRD, TGA, FTIR and MIP are the means to evaluate this binary geopolymer. The heavy metal leaching concentration of this geopolymer was used as a basis for assessing its environmental impact. The results show that the introduction of SS helps to improve the compressive strength of geopolymers. The introduction of SS supplements the active Ca and promotes the production of C-(A)-S-H gels. Increasing the alkali doping on this basis contributes to the dissolution of active substances in MSWIBA and SS and promotes the generation of silica-aluminate gels, which likewise contributes to the development of compressive strength of geopolymers. The activation of MSWIBA by alkali can be used as an aluminum removal process, which can reduce the volume of harmful pores in the geopolymer. The solidification efficiency of heavy metals after the introduction of SS can be>90%.

7.
Bioinspir Biomim ; 18(6)2023 09 19.
Article in English | MEDLINE | ID: mdl-37652044

ABSTRACT

Some weakly electric fish can use electric signals to interact and communicate with each other in dark and complex underwater environments where traditional underwater communication fails. In our previous work, we developed a bio-inspired electrocommunication system (BECS) that serves as an effective alternative to traditional methods in this challenging underwater scenario performing communication at a speed of approximately 1200 bps (bits per second) within approximately 3 m. In this study, a novel underwater wireless communication system (BECS-II) is proposed to upgrade the BECS with much better performance. We first propose theoretical and simulation models for electrocommunication, including the effects of the angular frequency and electrode impedance. A custom-made digital communication system is employed in BECS-II to improve the anti-interference ability and channel capacity of the BECS. In addition, a novel circuit optimization strategy was used to develop a customized circuit to enhance the transmitting and receiving capabilities of the BECS-II. Dual-frequency communication is proposed to meet the communication demands of different tasks by taking inspiration from the task allocation and evolution mechanisms of weakly electric fish. The experimental results showed that BECS-II outperformed BECS in high-frequency mode at both the communication speed (approximately 20 kbps) and distance (approximately 10 m), whereas in low-frequency mode, it extended the communication range by transmitting data up to a distance of approximately 20 m at a speed of approximately 200 bps. A substantial increase in the communication distance can expand the robot motion space in a group and improve group flexibility.


Subject(s)
Electric Fish , Robotics , Animals , Communication , Computer Simulation , Electric Impedance
8.
J Environ Manage ; 341: 118053, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37167697

ABSTRACT

In this study, a novel method for the disposal of municipal solid waste incineration fly ash (MSWIFA) was proposed. By applying geopolymer technology, steel slag (SS) and MSWIFA were used together as precursors to synthesize a cementitious material with sufficient strength that is useable in construction. The effects of the dosages of SS and alkaline activator on the properties of the geopolymer were investigated. Compressive testing was used to characterize the mechanical properties of the geopolymer. X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for microscopic analysis. Leaching tests were performed to assess the immobilization effect of the geopolymer on heavy metals. The results showed that the compressive strength of the geopolymer reached 23.03 MPa at 56 d with 20% SS and 11% Na2O admixture. Highly polymerized hydration products, such as C-(A)-S-H gels and N-A-S-H gels, contributed to the compact microstructure, which provided mechanical strength and limited the migration and leaching of heavy metals in the geopolymer matrix. In terms of the results, this work is significant for the development of MSWIFA management.


Subject(s)
Metals, Heavy , Refuse Disposal , Incineration/methods , Coal Ash/chemistry , Solid Waste/analysis , Metals, Heavy/analysis , X-Ray Diffraction , Refuse Disposal/methods , Carbon/chemistry , Particulate Matter
9.
Front Biosci (Landmark Ed) ; 28(3): 42, 2023 03 02.
Article in English | MEDLINE | ID: mdl-37005755

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common selective and progressive neurodegenerative disorder of nigrostriatal dopaminergic (DA) neurons. Quercetin is a bioflavonoid with antioxidant, anti-inflammatory, anti-aging and anti-cancer properties. However, the exact mechanism by which quercetin exerts its protective effect on DAergic neurons remains unclear. PURPOSE: To investigate the underlying molecular mechanism of quercetin's protective effect on DA neurons using 1-methyl-4-phenylpyridinium (MPP+)-induced PD ferroptosis model in vitro. METHODS: MPP+ was used to induce cytotoxicity in SH-SY5Y/primary neurons. Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The expression levels of ferroptosis-related proteins (NCOA4, SLC7A11, Nrf2, and GPX4) were determined by Western blotting. Malondialdehyde (MDA), iron, and GPX4 levels were assesed using corresponding assay kits. Lipid peroxidation was assessed by C11-BODIPY staining. RESULTS: In the MPP+-induced ferroptosis model of SH-SY5Y cells, the expressions of SLC7A11 and GPX4 were inhibited, and the expression of NCOA4 protein was increased, causing the overproduction of MDA and lipid peroxidation. Quercetin can reduce the above changes caused by MPP+, that is, reduce the protein expression of NCOA4 in SH-SY5Y cells, increase SLC7A11 and GPX4 partially inhibited by MPP+, and reduce MDA overproduction and lipid peroxidation to protect DA neurons. Nrf2 inhibitor ML385 could inhibit quercetin-induced increase of GPX4 and SLC7A11 protein expression, indicating that the protective effect of quercetin was mediated through Nrf2. CONCLUSIONS: The results of this study suggest that quercetin regulates ferroptosis through Nrf2-dependent signaling pathways, thereby inhibiting MPP+-induced neurotoxicity in SH-SY5Y/primary neurons.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Dopaminergic Neurons/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , 1-Methyl-4-phenylpyridinium/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Quercetin/pharmacology , Cell Line, Tumor , Neuroblastoma/metabolism , Signal Transduction , Parkinson Disease/drug therapy , Parkinson Disease/metabolism
10.
Research (Wash D C) ; 6: 0062, 2023.
Article in English | MEDLINE | ID: mdl-36930813

ABSTRACT

The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals' musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback.

11.
Front Psychiatry ; 14: 1105840, 2023.
Article in English | MEDLINE | ID: mdl-36846234

ABSTRACT

Background and aims: Excessive use of cell phones can take up college students' time and energy, and the sleep quality will inevitably be affected. A high level of psychological resilience can help them to maintain a positive attitude and cope with stressful events. However, few studies were conducted to investigate the effects of psychological resilience buffering cell phone addiction on sleep quality. In our hypothesis, psychological toughness would mitigate the worsening impact of cell phone addiction on sleep quality. Methods: The sample consisted of 7,234 Chinese college students who completed an electronic questionnaire that included demographic characteristics, such as the Mobile Phone Addiction Index (MPAI), the Psychological Resilience Index (CD-RISC), and the Pittsburgh Sleep Quality Index (PSQI). SPSS 26.0 was used for data analysis, the measurement data were described by x ¯ ± s for those conforming to normal distribution, and the comparison of means between groups was analyzed by group t-test or one-way ANOVA. Those that was not conforming to normal distribution were described by median M (P 25, P 75), and the comparison of M between groups was analyzed by Mann-Whitney U test and Kruskal-Wallis H test. Using Spearman correlation analysis, the associations between mobile phone addiction, psychological resilience, and sleep quality were evaluated. Using SPSS Process, the mediating role of psychological resilience was examined. Results: The mean scores of cell phone addiction and psychological resilience were 45.00 (SD = 13.59) and 60.58 (SD = 18.30), respectively; the sleep quality score M (P 25, P 75) was 5.0 (3.0, 7.0). Cell phone addiction among college students had a direct predictive effect on sleep quality (ß = 0.260, P < 0.01), and psychological resilience had a negative correlation with both cell phone addiction and sleep quality (ß = -0.073, P < 0.01, and ß = -0.210, P < 0.01). Psychological resilience was responsible for a mediating effect value of 5.556% between cell phone addiction and sleep quality. Conclusion: Cell phone addiction has an impact on sleep quality both directly and indirectly through the mediating effect of psychological resilience. Increased psychological resilience has the potential effect to buffer the exacerbating of cell phone addiction on sleep quality. These findings provide an evidence for cell phone addiction prevention, psychological management, and sleep improvement in China.

12.
Materials (Basel) ; 17(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203970

ABSTRACT

The SA516 Gr.70 steel possessing excellent toughness and plasticity has been widely used in the cryogenic field. However, the appearance of coarse bainite in the heat affected zone (HAZ) of the fusion welded joint deteriorates the toughness and ductility. In this work, 4.5 mm thick SA516 Gr.70 steel was joined using shielded metal arc welding (SMAW) and friction stir welding (FSW), respectively, and the microstructure and mechanical properties of joints were investigated in detail. The Charpy energy in the HAZ in the FSW joint was 80 J/cm2, which was higher than that of the HAZ in the SMAW joint (60 J/cm2) and due to microstructure refinement. In addition, the total elongation (TE) of the SMAW joint was 17.5%, which was higher than that of the FSW joint (12.1%) and caused by a wider nugget zone with high hardness. The post-welding annealing was used to improve the toughness and ductility of the SMAW and FSW joints, and the microstructure and mechanical properties of the joints after annealing were analyzed. The toughness in the HAZ of the SMAW and FSW joints were 80 and 103 J/cm2, and the TE of the SMAW and FSW joints were 18.6% and 25.2%, respectively. Finally, the as-annealed FSW joints exhibited excellent toughness and ductility. The abovementioned excellent mechanical properties were primarily attributed to the appearance of tempering martensite, decrease in dislocation density, and fine grain.

13.
Article in English | MEDLINE | ID: mdl-36070266

ABSTRACT

In this article, the pose regulation control problem of a robotic fish is investigated by formulating it as a Markov decision process (MDP). Such a typical task that requires the robot to arrive at the desired position with the desired orientation remains a challenge, since two objectives (position and orientation) may be conflicted during optimization. To handle the challenge, we adopt the sparse reward scheme, i.e., the robot will be rewarded if and only if it completes the pose regulation task. Although deep reinforcement learning (DRL) can achieve such an MDP with sparse rewards, the absence of immediate reward hinders the robot from efficient learning. To this end, we propose a novel imitation learning (IL) method that learns DRL-based policies from demonstrations with inverse reward shaping to overcome the challenge raised by extremely sparse rewards. Moreover, we design a demonstrator to generate various trajectory demonstrations based on one simple example from a nonexpert helper, which greatly reduces the time consumption of collecting robot samples. The simulation results evaluate the effectiveness of our proposed demonstrator and the state-of-the-art (SOTA) performance of our proposed IL method. Furthermore, we deploy the trained IL policy on a physical robotic fish to perform pose regulation in a swimming tank without/with external disturbances. The experimental results verify the effectiveness and robustness of our proposed methods in real world. Therefore, we believe this article is a step forward in the field of biomimetic underwater robot learning.

14.
Front Oncol ; 12: 962540, 2022.
Article in English | MEDLINE | ID: mdl-36158688

ABSTRACT

Objective: To evaluate the role of POGLUT2 in pan-cancer through bioinformatics analysis and experimental verification. Methods: Expression, gene mutation and amplification, methylation, and copy number alteration (CNA) of POGLUT2 were evaluated using The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx) databases. Moreover, POGLUT2 on survival and disease progression in pan-cancer was performed using TCGA data. Immune infiltration and tumor microenvironment evaluations were assessed by ImmuneScore, ImmuCellAI, and TIMER databases. POGLUT2 correlated drug resistance analysis was performed using the GDSC2 database. Furthermore, POGLUT2 knockdown of breast cancer cells was established, followed by in vitro biological function assays and in vivo tumor growth study. The mechanisms of POGLUT2 in breast cancer were briefly evaluated via its connection with Notch signaling. Results: Increased levels of POGLUT2 were found in multiple types of cancer tissues and cell lines. Moreover, increased gene mutation and amplification, methylation, and CNA of POGLUT2 were found in several types of cancers. POGLUT2 was mainly expressed in stromal cells as verified by StromalScore, ESTIMATEScore, ImmuneScore, and Tumor purity, and POGLUT2 was positively correlated with cancer-associated fibroblasts, macrophages, monocytes, and neutrophils in the tumor microenvironment. In vitro and in vivo results showed that POGLUT2 knockdown could delay tumor growth and progression. Notch signaling components were related to the function of POGLUT2. Conclusions: Increased levels of POGLUT2 could result in the dysregulated immune cell infiltration and tumor microenvironment and showed a significant regulatory effect on the progression of breast cancer through Notch-related signaling.

15.
Sci Total Environ ; 852: 158254, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36028021

ABSTRACT

The increase in municipal solid waste (MSW) production has led to an increase in MSW incineration fly ash (MSWIFA) production. MSWIFA contains toxic and harmful substances such as heavy metals and dioxins, which can cause harm to the environment if not treated properly. Only a few MSWIFAs will be landfilled directly, and the rest will need to be treated by other methods. The treatment of MSWIFA can be divided into three types: separation, stabilization/solidification (S/S), and thermal treatment, which are either not fully developed or too costly. Resource utilization is a sustainable means of treating MSWIFA. MSWIFA is used in the production of cement and alkali-activated cementitious materials as a means of resource utilization with significant advantages. This can alleviate the consumption of nature and reduce greenhouse gas emissions in conventional cement production. Compared with MSWIFA cement, MSWIFA alkali-activated cementitious material can be achieved with almost no consumption of natural resources, which is worthy of further research to realize the large-scale application of MSWIFA. At the end of the paper, the perspective of separation of dioxins from MSWIFA, co-processing of MSWI ash, and production of "MSWIFA green materials" is presented.


Subject(s)
Dioxins , Greenhouse Gases , Metals, Heavy , Refuse Disposal , Incineration , Coal Ash , Solid Waste/analysis , Alkalies , Metals, Heavy/analysis , Carbon , Refuse Disposal/methods , Particulate Matter
16.
Bioinspir Biomim ; 17(6)2022 09 06.
Article in English | MEDLINE | ID: mdl-35944552

ABSTRACT

Current underwater communication typically includes acoustic, optical, radio frequency, and magneto-inductive channels. Wireless sensor networks are usually built on these four channels. However, these underwater networks are vulnerable to complex aquatic environments. In nature, weakly electric fish are able to communicate electrically (called electrocommunication), which is 'invisible' to most other animals, to convey information such as species, courtship, and environmental conditions. Inspired by the electrocommunication of weakly electric fish, an artificial electrocommunication system that uses an electric induction (EI) channel has been developed recently. This paper further develops an underwater networking system using the EI channel, which addresses the solutions to collision avoidance and routing problems during electrocommunication networking. In particular, a CSMA/CA-based electrocommunication mechanism was used to solve the collision problem. Then, a single-hop underwater electrocommunication network (UEN) was established. Furthermore, a complex multi-hop UEN was implemented on the basis of the ad hoc on-demand distance vector routing protocol. Theoretical analysis, simulations, and experiments were conducted to demonstrate the effectiveness of the developed UEN. Extensive results show that the UEN holds the potential to serve as a complement to future underwater wireless sensor networks.


Subject(s)
Electric Fish , Acoustics , Animals , Electricity
17.
Bioinspir Biomim ; 17(5)2022 07 20.
Article in English | MEDLINE | ID: mdl-35767978

ABSTRACT

Due to the challenging communication and control systems, few underwater multi-robot coordination systems are currently developed. In nature, weakly electric fish can organize their collective activities using electrocommunication in turbid water. Inspired by this communication mechanism, we developed an artificial electrocommunication system for underwater robots in our previous work. In this study, we coordinate a group of underwater robots using this bio-inspired electrocommunication. We first design a time division multiple access (TDMA) network protocol for electrocommunication to avoid communication conflicts during multi-robot coordination. Then, we revise a distributed controller to coordinate a group of underwater robots. The distributed controller on each robot generates the required controls based on adjacent states obtained through electrocommunication. A central pattern generator (CPG) controller is designed to adjust the speed of individuals according to distributed control law. Simulations and experimental results show that a group of underwater robots is able to achieve coordination with the developed electrocommunication and control systems.


Subject(s)
Electric Fish , Robotics , Animals , Robotics/methods , Water
18.
Nat Commun ; 13(1): 3325, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680888

ABSTRACT

Underwater communication is a critical and challenging issue, on account of the complex underwater environment. This study introduces an underwater wireless communication approach via Maxwell's displacement current generated by a triboelectric nanogenerator. Underwater electric field can be generated through a wire connected to a triboelectric nanogenerator, while current signal can be inducted in an underwater receiver certain distance away. The received current signals are basically immune to disturbances from salinity, turbidity and submerged obstacles. Even after passing through a 100 m long spiral water pipe, the electric signals are not distorted in waveform. By modulating and demodulating the current signals generated by a sound driven triboelectric nanogenerator, texts and images can be transmitted in a water tank at 16 bits/s. An underwater lighting system is operated by the triboelectric nanogenerator-based voice-activated controller wirelessly. This triboelectric nanogenerator-based approach can form the basis for an alternative wireless communication in complex underwater environments.

19.
Adv Sci (Weinh) ; 9(17): e2104382, 2022 06.
Article in English | MEDLINE | ID: mdl-35388640

ABSTRACT

A soft gripper inspired by the glowing sucker octopus (Stauroteuthis syrtensis)' highly evolved grasping capability enabled by the umbrella-shaped dorsal and ventral membrane between each arm is presented here, comprising of a 3D-printed linkage mechanism used to actuate a modular mold silicone-casting soft suction disc to deform. The soft gripper grasp can lift objects using the suction generated by the pump in the soft disc. Moreover, the protruded funnel-shaped end of the deformed suctorial mouth can adapt to smooth and rough surfaces. Furthermore, when the gripper contacts the submerged target objects in a turbid environment, local suctorial mouth arrays on the suction disc are locked, causing the variable flow inside them, which can be detected as a tactile perception signal to the target objects instead of visual perception. Aided by the 3D-printed linkage mechanism, the soft gripper can grasp objects of different shapes and dimensions, including flat objects, objects beyond the grasping range, irregular objects, scattered objects, and a moving turtle. The results report the soft gripper's versatility and demonstrate the vast application potentials of self-adaptive grasping and sensing in various environments, including but are not limited to underwater, which is always a key challenge of grasping technology.


Subject(s)
Octopodiformes , Robotics , Animals , Hand Strength , Robotics/methods , Suction
20.
Environ Int ; 163: 107209, 2022 05.
Article in English | MEDLINE | ID: mdl-35358787

ABSTRACT

Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.


Subject(s)
Asthma , Flame Retardants , Pneumonia , Animals , Asthma/chemically induced , Flame Retardants/toxicity , Mice , NF-kappa B , Organophosphates/toxicity , Ovalbumin , Phosphatidylinositol 3-Kinases , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...