Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(2): 1728-1744, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38441888

ABSTRACT

Rosmarinic acid (RA) is an important medicinal metabolite and a potent food antioxidant. We discovered that exposure to high light intensifies the accumulation of RA in the leaves of perilla (Perilla frutescens (L.) Britt). However, the molecular mechanism underlying RA synthesis in response to high light stress remains poorly understood. To address this knowledge gap, we conducted a comprehensive analysis employing transcriptomic sequencing, transcriptional activation, and genetic transformation techniques. High light treatment for 1 and 48 h resulted in the upregulation of 592 and 1,060 genes, respectively. Among these genes, three structural genes and 93 transcription factors exhibited co-expression. Notably, NAC family member PfNAC2, GBF family member PfGBF3, and cinnamate-4-hydroxylase gene PfC4H demonstrated significant co-expression and upregulation under high light stress. Transcriptional activation analysis revealed that PfGBF3 binds to and activates the PfNAC2 promoter. Additionally, both PfNAC2 and PfGBF3 bind to the PfC4H promoter, thereby positively regulating PfC4H expression. Transient overexpression of PfNAC2, PfGBF3, and PfC4H, as well as stable transgenic expression of PfNAC2, led to a substantial increase in RA accumulation in perilla. Consequently, PfGBF3 acts as a photosensitive factor that positively regulates PfNAC2 and PfC4H, while PfNAC2 also regulates PfC4H to promote RA accumulation under high light stress. The elucidation of the regulatory mechanism governing RA accumulation in perilla under high light conditions provides a foundation for developing a high-yield RA system and a model to understand light-induced metabolic accumulation.


Subject(s)
Cinnamates , Depsides , Gene Expression Regulation, Plant , Light , Plant Proteins , Rosmarinic Acid , Depsides/metabolism , Cinnamates/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Perilla frutescens/genetics , Perilla frutescens/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects , Promoter Regions, Genetic/genetics
2.
Sensors (Basel) ; 23(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687887

ABSTRACT

With the development of underwater technology and the increasing demand for ocean development, more and more intelligent equipment is being applied to underwater scientific missions. Specifically, autonomous underwater vehicle (AUV) clusters are being used for their flexibility and the advantages of carrying communication and detection units, often performing underwater tasks in formation. In order to locate AUVs with high precision, we introduce an unmanned surface vehicle (USV) with global positioning system (GPS) and propose a USV-AUV network. Furthermore, we propose an ultra-short baseline (USBL) acoustic cooperative location scheme with an orthogonal array, which is based on underwater communication with sonar. Based on the derivation of the Fisher information matrix formula under Cartesian parameters, we analyze the positioning accuracy of AUVs in different positions under the USBL positioning mode to derive the optimal array of the AUV formation. In addition, we propose a USV path planning scheme based on Dubins path planning functions to assist in locating the AUV formation. The simulation results verify that the proposed scheme can ensure the positioning accuracy of the AUV formation and help underwater research missions.

3.
Gene ; 889: 147808, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37722611

ABSTRACT

Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.


Subject(s)
Perilla frutescens , Perilla , Perilla frutescens/genetics , Perilla frutescens/metabolism , Perilla/genetics , Perilla/metabolism , Transcriptome , Gene Expression Profiling , Seeds/genetics , Multigene Family , Plant Oils , Lipids , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny
4.
Front Plant Sci ; 13: 976449, 2022.
Article in English | MEDLINE | ID: mdl-36212297

ABSTRACT

The perilla anthocyanins have important medicinal and ornamental value, and their contents are significantly affected by light intensity. In view of their molecular mechanisms were not well understood, we integrated the metabolomic and transcriptomic analyses of the light-sensitive perilla variety under different light intensity. The perilla leave color were obviously affected under different treatments. Totally 140 flavonoid metabolites and 2461 genes showed steady change, among which 60 flavonoid metabolites were increased accumulation and 983 genes were upregulated expression under elevated light intensity treatment. Light treatment prominently affected the expression of genes involved in the main anthocyanin metabolites accumulation in perilla leaves. Using WGCNA analysis, we identified 4 key genes in anthocyanin biosynthesis pathway (CHI, DFR, and ANS) and 147 transcription factors (MYB, bHLH, bZIP, ERF, and NAC) involved in malonylshisonin biosynthesis. Among them, 6 MYBs and 4 bZIPs were predicted to play important roles in light regulation of malonylshisonin biosynthesis based on phylogenetic construction, correlation analysis, cis-acting element identification and qPCR verification. The identified key genes and regulatory factors will help us to understand the potential mechanism of photo-regulated anthocyanin accumulation in perilla.

SELECTION OF CITATIONS
SEARCH DETAIL
...