Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Lett ; 20(5): 233, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32968455

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, with the second highest mortality rate among all cancer types. Growing evidence has demonstrated the notable effects of intratumor heterogeneity (ITH) and tumor immune microenvironment heterogeneity (TIMH) on the biological processes involved in HCC. However, the interactive mechanisms between ITH and TIMH is still unclear. The present study systematically screened the mRNA expression, simple nucleotide variation data and clinical data of samples from The Cancer Genome Atlas (TCGA). The mutant-allele tumor heterogeneity (MATH) score was used to represent ITH, and TCGA cohort was divided into two groups according to the MATH score. Next, different immune-related signaling pathways and enriched immune-related genes were identified using Gene Set Enrichment Analysis of these two groups, and the results revealed that interleukin-1α (IL1A) and serine/threonine-protein kinase PAK4 were associated with prognosis. Furthermore, CIBERSORT was utilized to calculate the fractions of 22 types of leukocytes to represent TIMH, and the fractions of M1 and M2 macrophages were confirmed to be associated with prognosis. Therefore, PAK4, interleukin-1α (IL1A), and M1/M2 ratio were selected as the key factors involved in the interaction between ITH and TIMH. Afterwards, microRNAs (miRNAs) that were linearly related to the M1/M2 ratio and the potential target genes of the miRNAs were screened. Finally, the regulatory network between PAK4, IL1A, and the M1/M2 ratio was established, bridged by the above miRNAs and the target genes. In addition, PAK4, heat shock protein 105 kDa and miRNA-1911 were demonstrated to be a key factor involved in immune response via Weighted Correlation Network Analysis in HCC.

2.
Aging (Albany NY) ; 11(20): 8860-8878, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31619579

ABSTRACT

OBJECTIVE: This study is implemented to probe into the function of lncRNA SBF2-AS1 as a competing endogenous RNA (ceRNA) to sponge microRNA-142-3p (miR-142-3p) in modulating TWF1 expression in the gemcitabine resistance of pancreatic cancer. RESULTS: LncRNA SBF2-AS1 was highly expressed in pancreatic cancer tissues and cells. SBF2-AS1 was found to be associated with gemcitabine resistance in pancreatic cancer. Knock-down of SBF2-AS1 inhibited proliferation, epithelial-mesenchymal transition, while promoting apoptosis of gemcitabine resistant pancreatic cancer cells. SBF2-AS1 inhibited the expression of TWF1 by competitively binding with miR-142-3p in pancreatic cancer. CONCLUSION: Our study demonstrates that knock-down of SBF2-AS1 inhibits the expression of TWF1 by competitively binding with miR-142-3p to induce gemcitabine resistance in pancreatic cancer. METHODS: Expression of SBF2-AS1 was tested in pancreatic cancer tissues and cells. Construction of AsPC-1/GEM and PANC-1/GEM cells with low expression of SBF2-AS1 was performed to determine the biological behaviors of drug-resistant cells. AsPC-1 and PANC-1 cells expressing SBF2-AS1 and/or miR-142-3p were constructed and treated with different concentrations of gemcitabine to detect the sensitivity of the cells to gemcitabine. The binding relationship between SBF2-AS1 and miR-142-3p and between miR-142-3p and TWF1 were determined.


Subject(s)
Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm , MicroRNAs/metabolism , Microfilament Proteins/metabolism , Pancreatic Neoplasms/drug therapy , Protein-Tyrosine Kinases/metabolism , RNA, Long Noncoding/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Deoxycytidine/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Male , MicroRNAs/genetics , Microfilament Proteins/genetics , Middle Aged , Protein-Tyrosine Kinases/genetics , RNA, Long Noncoding/genetics , Up-Regulation , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...