Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 117(3): 800-808, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38572760

ABSTRACT

Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), a highly destructive pest in Asia, poses a significant threat to maize production by causing substantial yield losses. However, there is a lack of information regarding the impact of temperature variations on its population dynamics and the age-stage and two-sex life table. This study aimed to investigate the impact of 4 temperatures (20 °C, 24 °C, 28 °C, 32 °C) on the development, reproduction, and survival of O. furnacalis under controlled laboratory conditions. Our results revealed that O. furnacalis successfully developed, survived, and laid eggs across the tested temperatures (20-32 °C). The shortest developmental duration for all immature stages was observed at 32 °C. Conversely, increasing temperatures led to decreased longevity. Among the temperatures tested, 28 °C proved to be optimal for O. furnacalis, exhibiting the highest intrinsic rate of increase, finite rate of increase, and net reproductive rate. Our findings indicate that O. furnacalis thrives within a wide temperature range of 20-32 °C, with 28 °C being the most favorable for reproduction. These insights are crucial for predicting population dynamics under diverse climatic conditions and developing effective control strategies against O. furnacalis. This study enhances our understanding of O. furnacalis' life-history traits and provides valuable information for targeted pest management approaches.


Subject(s)
Larva , Life Tables , Moths , Temperature , Animals , Moths/growth & development , Moths/physiology , Female , Male , Larva/growth & development , Larva/physiology , Population Dynamics , Longevity , Pupa/growth & development , Pupa/physiology , Reproduction , Life History Traits
2.
Front Plant Sci ; 13: 853220, 2022.
Article in English | MEDLINE | ID: mdl-35909776

ABSTRACT

Due to the rising concentration of atmospheric CO2, climate change is predicted to intensify episodes of drought. However, our understanding of how combined environmental conditions, such as elevated CO2 and drought together, will influence crop-insect interactions is limited. In the present study, the direct effects of combined elevated CO2 and drought stress on wheat (Triticum aestivum) nutritional quality and insect resistance, and the indirect effects on the grain aphid (Sitobion miscanthi) performance were investigated. The results showed that, in wheat, elevated CO2 alleviated low water content caused by drought stress. Both elevated CO2 and drought promoted soluble sugar accumulation. However, opposite effects were found on amino acid content-it was decreased by elevated CO2 and increased by drought. Further, elevated CO2 down-regulated the jasmonic acid (JA) -dependent defense, but up-regulated the salicylic acid (SA)-dependent defense. Meanwhile, drought enhanced abscisic acid accumulation that promoted the JA-dependent defense. For aphids, their feeding always induced phytohormone resistance in wheat under either elevated CO2 or drought conditions. Similar aphid performance between the control and the combined two factors were observed. We concluded that the aphid damage suffered by wheat in the future under combined elevated CO2 and drier conditions tends to maintain the status quo. We further revealed the mechanism by which it happened from the aspects of wheat water content, nutrition, and resistance to aphids.

3.
Plant Biotechnol J ; 20(11): 2187-2201, 2022 11.
Article in English | MEDLINE | ID: mdl-35984895

ABSTRACT

Aphids secrete diverse repertoires of salivary effectors into host plant cells to promote infestation by modulating plant defence. The greenbug Schizaphis graminum is an important cereal aphid worldwide. However, the secreted effectors of S. graminum are still uncharacterized. Here, 76 salivary proteins were identified from the watery saliva of S. graminum using transcriptome and proteome analyses. Among them, a putative salivary effector Sg2204 was significantly up-regulated during aphid feeding stages, and transient overexpression of Sg2204 in Nicotiana benthamiana inhibited cell death induced by BAX or INF1. Delivering Sg2204 into wheat via the type III secretion system of Pseudomonas fluorescens EtAnH suppressed pattern-triggered immunity (PTI)-associated callose deposition. The transcript levels of jasmonic acid (JA)- and salicylic acid (SA)-associated defence genes of wheat were significantly down-regulated, and the contents of both JA and SA were also significantly decreased after delivery of Sg2204 into wheat leaves. Additionally, feeding on wheat expressing Sg2204 significantly increased the weight and fecundity of S. graminum and promoted aphid phloem feeding. Sg2204 was efficiently silenced via spray-based application of the nanocarrier-mediated transdermal dsRNA delivery system. Moreover, Sg2204-silenced aphids induced a stronger wheat defence response and resulted in negative impacts on aphid feeding behaviour, survival and fecundity. Silencing of Sg2204 homologues from four aphid species using nanocarrier-delivered dsRNA also significantly reduced aphid performance on host plants. Thus, our study characterized the salivary effector Sg2204 of S. graminum involved in promoting host susceptibility by suppressing wheat defence, which can also be regarded as a promising RNAi target for aphid control.


Subject(s)
Aphids , Animals , Aphids/genetics , Triticum/metabolism , Salivary Proteins and Peptides/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism
4.
Ecotoxicol Environ Saf ; 228: 113008, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34808504

ABSTRACT

Clarification of the interactions between engineered nanomaterials and multiple generations of insects is crucial to understanding the impact of nanotechnology on the environment and agriculture, particularly in toxicity management, pest management and genetic engineering. To date, there has been very limited information about nanoparticle-insect interactions at the genetic and proteomic levels. Here, we examined the phenotypic responses and potential mechanism of a lepidopteran insect Asian corn borer (ACB) to graphene oxide (GO). It was demonstrated that GO could significantly promote the growth of ACB. The transcriptomic and proteomic results consistently verified that GO might activate trypsin-like serine protease, glutathione S-transferase, heat shock protein and glycosyltransferase to further influence the development of ACB. RNA interference results indicated that the trypsin gene was one of the critical genes to accelerate the growth of ACB fed with GO diet. Moreover, physiological analysis showed potential alterations of the expression levels of genes and proteins, and more cholesterol (CE), triacylglycerides (TG) and lipids were accumulated in GO-exposed ACB. Our findings may help to reveal the phenotypic, physiological and genetic responses of insects under exposure to nanomaterials and to assess the environmental risks of other nanomaterials.

5.
RSC Adv ; 11(57): 36089-36097, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-35492771

ABSTRACT

Nanopesticides with controlled release can achieve more effective utilization of pesticides. Here, to enhance the adsorption of pesticides onto the target organisms, the formulation of pesticides with temperature-responsive release was proposed by combing graphene oxide (GO) and existing pyrethroid pesticides (cyhalothrin, bifenthrin and fenpropathrin). Pesticides were loaded onto GO nanosheets as a carrier via a simple physisorption process, and the GO-pesticide nanocomposites exhibited temperature-responsive release and excellent storage stability, which are of vital importance to the practical application. Furthermore, we assessed the bioactivity of the GO-pesticide nanocomposites against spider mites (Tetranychus urticae Koch) indoors and in the field. As a result, GO-pesticide nanocomposites had many folds higher bioactivity than individual pesticides, and could be adsorbed on the cuticle of T. urticae and surface of bean leaves with highly uniform dispersibility. The easy preparation and higher bioactivity of GO-pesticide nanocomposites indicate their promising application potential in pest control and green agriculture.

6.
J Exp Bot ; 71(9): 2713-2722, 2020 05 09.
Article in English | MEDLINE | ID: mdl-31943041

ABSTRACT

Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant-insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.


Subject(s)
Aphids , Animals , Droughts , Fertility , Hot Temperature , Triticum
7.
Front Plant Sci ; 10: 739, 2019.
Article in English | MEDLINE | ID: mdl-31214237

ABSTRACT

Elevated atmospheric CO2 (eCO2) and increased nitrogen (N) fertilization significantly change the nutritional quality of plants and influence the growth and development of insects. However, little is known about plant metabolism and plant-insect interactions under eCO2 and increased N fertilization, especially C4 plants. Thus, the combined effects of eCO2 and increased N fertilization on maize-Ostrinia furnacalis interactions were tested in this study. Our data demonstrated that both eCO2 and increased N fertilization increased starch content, while increased N fertilization promoted the N content in maize. The combined effects of eCO2 and increased N fertilization did not influence the total non-structural carbohydrates (TNC):N ratio in maize. The jasmonic acid level of maize was enhanced by increased N fertilization and O. furnacalis infestation. The total phenolics content and defensive enzyme activities of maize increased under eCO2, increased N fertilization and O. furnacalis infestation. Protective enzyme activities were enhanced, while digestive enzyme activities, mean relative growth rate, body mass and efficiency of conversion of ingested food decreased for O. furnacalis feeding on maize grown under eCO2 and increased N fertilization. Therefore, eCO2 and increased N fertilization increased starch and N accumulation, and did not influence the TNC:N ratio, however, eCO2 and N promoted the resistance-related secondary metabolites (with or without O. furnacalis induced) of maize, which ultimately decreased the fitness of O. furnacalis to the host. These results will help to better understand the metabolic mechanisms of plants and the plant-insect interaction under eCO2 and increased N fertilization in the context of future climate change scenarios.

8.
Colloids Surf B Biointerfaces ; 173: 632-638, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30368210

ABSTRACT

Synergistic combination of pesticides and nanomaterials has been rarely reported in pest management science at present. In this work, graphene oxide (GO) was synergistically used with three types of pesticides (pyridaben (Pyr), chlorpyrifos (Chl) and beta-cyfluthrin (Cyf) respectively as acaricide against two economically important spider mites Tetranychus truncatus and T. urticae Koch. The results demonstrated that GO can enhance the activity of three types of pesticides. Compared with pesticides, the GO-Cyf, GO-Pyr and GO-Chl mixtures exhibited 1.77-, 1.56- and 1.55-fold higher contact toxicity against T. truncatus, and 1.50-, 1.75-, and 1.78-fold higher contact toxicity against T. urticae. SEM results showed that pesticide can adsorbed on the surface of GO. The synergistic mechanism may be that GO can serve as a carrier of pesticides, which can be adsorbed on the surface of mites and thus improve efficacy and utilization efficiency of pesticides. This kind of GO-based nanoscale pesticide delivery system may find widespread application in the field of plant protection in the future.


Subject(s)
Acaricides/toxicity , Chlorpyrifos/toxicity , Graphite/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Pyridazines/toxicity , Tetranychidae/drug effects , Acaricides/chemistry , Adsorption , Animals , Chlorpyrifos/chemistry , Graphite/chemistry , Longevity/drug effects , Nanocomposites/chemistry , Nanocomposites/toxicity , Nitriles/chemistry , Oxides , Pyrethrins/chemistry , Pyridazines/chemistry , Tetranychidae/anatomy & histology , Tetranychidae/physiology
10.
Exp Appl Acarol ; 70(4): 421-435, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27783179

ABSTRACT

Entomopathogenic fungi and predatory mites can independently contribute to suppressing the two-spotted spider mite, Tetranychus urticae Koch. It is important to assess the risk of possible fungal infections in predators when a combination of them are being considered as a tandem control strategy for suppressing T. urticae. The first part of this study tested 12 Beauveria bassiana isolates for virulence in T. urticae. Strains SCWJ-2, SDDZ-9, LNSZ-26, GZGY-1-3 and WLMQ-32 were found to be the most potent, causing 37.6-49.5% adult corrected mortality at a concentration of 1 × 107 m/L conidia 4 days post-treatment. The second part evaluated the pathogenicity of these five strains in five species of predatory phytoseiid mites. The bioassay results indicated that all adult predatory mite mortalities ranged from 7.5 to 9.1% 4 days post-treatment. No viable fungal hyphae were found on predator cadavers. Observations with scanning electron microscopy revealed that conidia were attached to the cuticle of predatory mites within 2-12 h after spraying with strain LNSZ-26, and had germinated within 24-36 h. After 48 h, conidia had gradually been shed from the mites, after none of the conidia had penetrated the cuticular surfaces. In contrast, the germinated conidia successfully penetrated the cuticle of T. urticae, and within 60 h the fungus colonized the mite's body. Our study demonstrated that although several B. bassiana strains displayed a high virulence in T. urticae there was no evident pathogenicity to phytoseiid mites. These findings support the potential use of entomopathogenic fungus in combination with predatory mites in T. urticae control programs.


Subject(s)
Beauveria/physiology , Animals , Beauveria/pathogenicity , Beauveria/ultrastructure , Microscopy, Electron, Scanning , Mites/microbiology , Mites/ultrastructure , Pest Control, Biological , Spores, Fungal/pathogenicity , Spores, Fungal/ultrastructure , Tetranychidae/microbiology , Tetranychidae/physiology , Tetranychidae/ultrastructure , Virulence
11.
Sci Rep ; 5: 13923, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26381457

ABSTRACT

The effects of elevated CO2 (E-CO2) on maize and Asian corn borer (ACB), Ostrinia furnacalis, in open-top chambers were studied. The plants were infested with ACB and exposed to ambient and elevated (550 and 750 µl/l) CO2. E-CO2 increased the plant height and kernel number per ear. The plants had lower nitrogen contents and higher TNC: N ratios under E-CO2 than at ambient CO2. The response of plant height to E-CO2 was significantly dampened in plants with ACB infestation. However, the weight gain of the survivors declined in plants grown under E-CO2. Moreover, the plant damage caused by ACB was not different among the treatments. Overwintering larvae developed under E-CO2 had a lower supercooling point than those developed under ambient CO2. The results indicated that there was a positive effect of E-CO2 on the accumulation of maize biomass, i.e., the "air-fertilizer" effect, which led to a nutritional deficiency in the plants. The fitness-related parameters of ACB were adversely affected by the CO2-mediated decreased in plant nutritional quality, and ACB might alter its food consumption to compensate for these changes. Larval damage to maize under E-CO2 appears to be offset by this "air-fertilizer" effect, with reductions in larval fitness.


Subject(s)
Atmosphere , Carbon Dioxide , Crops, Agricultural , Herbivory , Photosynthesis , Animals , Moths , Zea mays/chemistry , Zea mays/parasitology , Zea mays/physiology
12.
Environ Entomol ; 44(4): 1250-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26314071

ABSTRACT

Understanding direct response of insects to elevated CO2 should help to elucidate the mechanistic bases of the effects of elevated CO2 on interactions of insects with plants. This should improve our ability to predict shifts in insect population dynamics and community interactions under the conditions of climate change. Effects of elevated CO2 levels on the fitness-related parameters were examined for multigenerations in the Asian corn borer, Ostrinia furnacalis (Guenée). The larvae were allowed to feed on artificial diet, and reared in the closed-dynamic environment chambers with three CO2 levels (ambient, 550 µl/liter, and 750 µl/liter) for six generations. In comparison with the ambient CO2 level, mean larval survival rate decreased 9.9% in 750 µl/liter CO2 level, across O. furnacalis generations, and larval and pupal development times increased 7.5-16.4% and 4.5-13.4%, respectively, in two elevated CO2 levels. Pupal weight was reduced more than 12.2% in 750 µl/liter CO2 level. Across O. furnacalis generations, mean food consumption per larva increased 2.7, 7.0% and frass excretion per larva increased 14.4, 22.5% in the two elevated CO2 levels, respectively, compared with ambient CO2 level. Elevated CO2 levels resulted in the decline mean across O. furnacalis generations in mean relative growth rate, but increased in relative consumption rate. These results suggested that elevated CO2 would reduce the fitness-related parameters such as higher mortality, lower pupal weight, and longer development times in long term. It also reduced the larval food digestibility and utilizing efficiency; in turn, this would result in increase of food consumption.


Subject(s)
Carbon Dioxide/metabolism , Herbivory , Moths/physiology , Animal Nutritional Physiological Phenomena , Animals , Diet , Digestion , Larva/growth & development , Larva/physiology , Longevity , Moths/growth & development , Pupa/growth & development , Pupa/physiology
13.
Insect Sci ; 22(4): 578-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-24802514

ABSTRACT

Asian corn borer, Ostrinia furnacalis (Guenée), is a key corn pest in the Asian-Western Pacific countries. It overwinters as full-grown larvae in plant stalks or in a spun-silk covering located in the plant debris in the temperate regions of China. Supercooling point (SCP) and survival rate after low sub-zero temperature treatment were assessed for field-collected populations in the laboratory using a cool bath with a 1°C/min cooling rate until -40°C. Mean SCPs were varied among geographical populations, with a significant decline from -22.7°C of Haikou, the multivoltine tropical population in the south, to -28.5°C of Gongzhuling, the univoltine temperate population in the northeast of China. In addition, there was more than 1°C difference in SCP between Gongzhuling univoltine and bivoltine populations that were from the same geographic origin. Mean SCPs of the Guangzhou population fluctuated over the year, with significantly lower SCPs in winter than in other seasons, which correlated with a significantly higher proportion of diapausing larvae in winter than in other seasons. Over 41% of overwintering larvae from the northeast population could withstand to be supercooled for a few minutes to the low sub-zero temperature of -40°C, but only 6.7% of their southern counterparts did so. The findings from this study suggest that O. furnacalis mostly takes advantage of freeze avoidance as diapausing larvae for overwintering in the southern region, whereas it exhibits freeze tolerance in diapause in the northeastern region.


Subject(s)
Diapause, Insect , Moths/physiology , Animals , China , Cold Temperature , Geography , Larva/physiology , Seasons
14.
J Econ Entomol ; 107(4): 1411-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25195429

ABSTRACT

Biological characteristics of corn leaf aphid, Rhopalosiphum maidis (Fitch), on barley, Hordeum vulgare L., were examined for two generations under four different elevated temperature and CO2 combinations. The developmental duration for each life stage was significantly reduced under the elevated temperature (+4 degrees C). The elevated CO2 (700-750 microl/liter) reduced only the development time of fourth-instar nymph. The overall duration of nymphal stage was reduced in the second generation. Thus, the temperature was the dominant factor to development duration of corn leaf aphid. The fecundity of corn leaf aphid was significantly increased under the elevated temperature and CO2, as well as in the later generation. Elevated temperature and CO2 increased the number of alate production, which may enhance the aphid migration or dispersal and the spread of plant viruses. Corn leaf aphid had the highest intrinsic rate of increase under the elevated temperature and CO2 combination in the second generation. These results indicate that the combined effects of both elevated temperature and CO2 on aphid biology may exacerbate aphid damage on barley under the climate change in accompany with elevated temperature and CO2 level.


Subject(s)
Aphids/growth & development , Animals , Carbon Dioxide , Fertility , Life Tables , Temperature
15.
Ying Yong Sheng Tai Xue Bao ; 24(12): 3595-602, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24697084

ABSTRACT

Since the industrial revolution, the huge consumption of fossil fuels and unduly destruction of natural habitats by human activities have led to the ever-increasing concentration of atmospheric CO2. To study the adaptation mechanisms of plant, herbivorous insect, and its natural enemy within agricultural ecosystems to the elevated atmospheric CO2 concentration is of significance in deciphering the damage pattern of agricultural pest occurrence and controlling the pest occurrence and in mitigating the CO2 emission from agricultural ecosystems. This paper reviewed the research progress on the effects of elevated atmospheric CO2 on the host plant, herbivorous insect, and its natural enemy in agro-ecosystem, with the focuses on the improvement of related research methods, the variation patterns of host plant primary and secondary metabolites induced by elevated atmospheric CO2, the effects of the elevated CO2 on the growth and development, population density, and behaviors of herbivorous insect, and the biology and predation and/or parasitism rates of natural enemy. The future research frontiers in this research area were also discussed.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/chemistry , Herbivory , Insecta , Agriculture , Animals , Ecosystem , Plants
16.
J Econ Entomol ; 105(3): 854-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22812121

ABSTRACT

The effects of intercropping wheat, Triticum aestivum L., with mung bean, Vigna radiate L., on the populations of English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae), and its natural enemies were evaluated by field and laboratory experiments. The population densities of aphids and their natural enemies were evaluated in the intercropped field against different row ratio combinations of wheat-mung bean. Results showed that wheat-mung bean intercropping caused a drop in aphid densities, and the ratio 12 wheat: 4 mung bean brought about the largest drop (> 8%). In addition, the population densities of coccinellids (ladybirds) and parasitoids and the species diversity of all the natural enemies of aphid were higher in the intercropped field than in the field planted only with wheat. However, intercropping did not influence the community indices (evenness and index of dominance concentration) of the natural enemies. Y-tube olfactometer bioassays were carried out in the laboratory to test whether odor blends of host and nonhost plants affect the host selection of S. avenae. Bioassays indicated that both apterous and alate aphids significantly preferred host plant odor over odor blends of host and intercropped species. Hence, the olfactory-based host location of aphids in the field might be affected by intercropping. The intercropping experiment clearly showed that increased crop species diversity suppresses aphid population growth and preserves the population of natural enemies of aphids. Our results also provide support for the "resource concentration hypothesis" and the "enemies hypothesis".


Subject(s)
Agriculture/methods , Aphids , Fabaceae , Food Chain , Triticum/parasitology , Animals , Aphids/parasitology , Coleoptera , Host Specificity , Population Density , Smell , Wasps
SELECTION OF CITATIONS
SEARCH DETAIL
...