Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nat Mater ; 23(6): 810-817, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684883

ABSTRACT

For halide perovskites that are susceptible to photolysis and ion migration, iodide-related defects, such as iodine (I2) and iodine vacancies, are inevitable. Even a small number of these defects can trigger self-accelerating chemical reactions, posing serious challenges to the durability of perovskite solar cells. Fortunately, before I2 can damage the perovskites under illumination, they generally diffuse over a long distance. Therefore, detrimental I2 can be captured by interfacial materials with strong iodide/polyiodide (Ix-) affinities, such as fullerenes and perfluorodecyl iodide. However, fullerenes in direct contact with perovskites fail to confine Ix- ions within the perovskite layer but cause detrimental iodine vacancies. Perfluorodecyl iodide, with its directional Ix- affinity through halogen bonding, can both capture and confine Ix-. Therefore, inverted perovskite solar cells with over 10 times improved ultraviolet irradiation and thermal-light stabilities (under 85 °C and 1 sun illumination), and 1,000 times improved reverse-bias stability (under ISOS-V ageing tests) have been developed.

2.
ACS Appl Mater Interfaces ; 16(10): 13202-13211, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38438319

ABSTRACT

Quartz is a key raw material in high-tech fields (such as photovoltaics and semiconductor microelectronics), and the most efficient extraction method of quartz is mineral flotation. Quartz activation plays a crucial role in mineral flotation. However, the mechanism underlying the process remains unclear, and the role of additional metal ions is controversial. In this study, the interaction forces between the quartz surface, the dodecylamine (DDA) cation/sodium oleate (NaOL) anion mixed collectors, and Ca2+ were analyzed using atomic force microscopy in order to systematically explore the activation process of quartz flotation. The results confirmed that the activation process was initialized from NaOL, which was adsorbed on the surface of a calcium-covered quartz surface. The existence of DDA inhibited the binding of Ca2+ to NaOL so that more Ca2+ was adsorbed on the quartz surface to provide the adsorption site for NaOL. Moreover, the best adsorption condition of Ca2+ + NaOL + DDA mixed solution was analyzed by quartz crystal microbalance with dissipation, and it demonstrated that the most stable chemisorption environment on the quartz surface was at pH 11.0. In these circumstances, Ca2+ could first adsorb in a point-like manner on the quartz surface, which was then adsorbed with a mixture of NaOL and DDA. This result showed that, at a specific pH, Ca2+ could encourage the coadsorption of cationic/anionic mixed collectors on quartz. This work provides an important new understanding of the intermolecular interactions that take place during complex mineral flotation processes between chemical additives and mineral surfaces. The methodology used in this study can be easily adapted to different interfacial processes, including water treatment, membrane technology, bioengineering, and oil production.

3.
Small ; : e2310196, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377307

ABSTRACT

"Perovskite / Carbon" interface has remained a key bottleneck for the hole-conductor-free perovskite solar cells based on carbon-electrode (CPSCs), due to problems like loose physics contact, defects, energy mismatch, poor chemical coupling, etc. A previous study shows that octylammonium iodide (OAI) blending in carbon paste induced a kind of "in-situ healing" effect for "perovskite / carbon" interface, and improved power conversion efficiency from ≈13% to >19%. Here the beneath mechanism is further explored by careful examination of the interaction between OAI molecule and carbon black (CB) nanoparticles. It comes to show that, the famous "CB adsorption" plays a key role during the "healing" processes. Due to CB adsorption behavior, the mass ratio between OAI and CB influences much on the healing effect. By suitably adjusting the mass ratio between OAI and CB, and increasing the light harvest of perovskite, an efficiency of 19.41% is achieved for the hole-conductor-free CPSCs. Device efficiency and the charge-extraction and recombination process are tracked with the storage period, continuous improvement appears for devices assembled by relatively higher CB mass. A kind of "slow-release effect" is revealed during the OAI-induced "in-situ healing" process, which is caused by the famous "CB adsorption" behavior.

4.
Adv Mater ; 36(18): e2309844, 2024 May.
Article in English | MEDLINE | ID: mdl-38227203

ABSTRACT

Metal halide perovskite solar cells (PSCs) have garnered much attention in recent years. Despite the remarkable advancements in PSCs utilizing traditional metal electrodes, challenges such as stability concerns and elevated costs have necessitated the exploration of innovative electrode designs to facilitate industrial commercialization. Herein, a physically and chemically stable molybdenum (Mo) electrode is developed to fundamentally tackle the instability factors introduced by electrodes. The combined spatially resolved element analyses and theoretical study demonstrate the high diffusion barrier of Mo ions within the device. Structural and morphology characterization also reveals the negligible plastic deformation and halide-metal reaction during aging when Mo is in contact with perovskite (PVSK). The electrode/underlayer junction is further stabilized by a thin seed layer of titanium (Ti) to improve Mo film's uniformity and adhesion. Based on a corresponding p-i-n PSCs (ITO/PTAA/PVSK/C60/SnO2/ITO/Ti/Mo), the champion sample could deliver an efficiency of 22.25%, which is among the highest value for PSCs based on Mo electrodes. Meanwhile, the device shows negligible performance decay after 2000 h operation, and retains 91% of the initial value after 1300 h at 50-60 °C. In summary, the multilayer Mo electrode opens an effective avenue to all-round stable electrode design in high-performance PSCs.

5.
Small Methods ; 8(1): e2300716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37732360

ABSTRACT

"Perovskite/carbon" interface is a bottle-neck for hole-conductor-free, carbon-electrode basing perovskite solar cells due to the energy mismatch and concentrated defects. In this article, in-situ healing strategy is proposed by doping octylammonium iodide into carbon paste that used to prepare carbon-electrode on perovskite layer. This strategy is found to strengthen interfacial contact and reduce interfacial defects on one hand, and slightly elevate the work function of the carbon-electrode on other hand. Due to this effect, charge extraction is accelerated, while recombination is obviously reduced. Accordingly, power conversion efficiency of the hole-conductor-free, planar perovskite solar cells is upgraded by ≈50%, or from 11.65 (± 1.59) % to 17.97 (± 0.32) % (AM1.5G, 100 mW cm-2 ). The optimized device shows efficiency of 19.42% and open-circuit voltage of 1.11 V. Meanwhile, moisture-stability is tested by keeping the unsealed devices in closed chamber with relative humidity of 85%. The "in-situ healing" strategy helps to obtain T80 time of >450 h for the carbon-electrode basing devices, which is four times of the reference ones. Thus, a kind of "internal encapsulation effect" has also been reached. The "in situ healing" strategy facilitates the fabrication of efficient and stable hole-conductor-free devices basing on carbon-electrode.

6.
Small ; 20(5): e2306101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759427

ABSTRACT

Polyvinyl pyrrolidone is blended in PbI2 with varied concentration, so as to study the coarsening dynamics of perovskite during the two-step growth method. It is observed that polyvinyl pyrrolidone hinders the crystallization of PbI2 and helps to form a more amorphous PbI2 matrix, which then improves perovskite crystallization. As the blending concentration increases from 0 to 2 mM, average crystallite/grain size of perovskite increases from 40.29 nm/0.79 µm to 84.35 nm/1.02 µm while surface fluctuation decreases slightly from 25.64 to 23.96 nm. The observations are caused by the "confinement effect" brought by polyvinyl pyrrolidone on PbI2 . Elevating blending concentration of polyvinyl pyrrolidone results in smaller PbI2 crystallites and more amorphous PbI2 matrix, thus reducing the diffusion/reaction barrier between PbI2 and organic salt and favoring perovskite crystallization. As blending concentration increases from 0 to 2 mM, the device efficiency rises from 19.76 (± 0.60) % to 20.50 (± 0.89) %, with the optimized value up to 22.05%, which is further improved to 24.48% after n-Octylammonium iodide (OAI)-basing surface modification. The study enlarges the scope of "confinement effect" brought by polymer molecules, which is beneficial for efficient and stable perovskite solar cell fabrication.

7.
Am J Transl Res ; 15(5): 3267-3278, 2023.
Article in English | MEDLINE | ID: mdl-37303654

ABSTRACT

OBJECTIVE: To assess the effectiveness of susceptibility-weighted imaging (SWI) in displaying the superior petrosal vein complex (SPVC) and the role of venous three-dimensional (3D) reconstruction in visualizing the anatomical relationship in patients with trigeminal neuralgia (TN). METHODS: A total of 30 patients with primary TN who received treatment between September 2019 and December 2020 were enrolled prospectively in this study. All patients were examined with fast imaging employing steady-state acquisition (Fiesta), three-dimensional time of flight (3D-TOF) and SWI by the same technician. Image analysis was performed by 2 physicians. 3D reconstruction of nerves, arteries, and veins was performed with 3dslicer and compared with intraoperative findings. The general characteristics, vein description in MRI, and the composition of SPVC types were also compared. RESULTS: The display effect of SPVC in SWI was significantly better than that in Fiesta and 3D-TOF (P < 0.05). The display effect of phase images was found to be superior to magnitude images (P < 0.05). The superior petrosal vein, pontotrigeminal vein, transverse pontine vein, and vein of the cerebellopontine fissure were clearly displayed in SWI. The anatomical relationship between SPVC and trigeminal nerve shown by 3D reconstruction of the vein was consistent with the findings observed during the operation. CONCLUSION: The SPVC can be clearly displayed by SWI. 3D reconstruction of the vein can accurately display the anatomical relationship between the trigeminal nerve and SPVC.

8.
Angew Chem Int Ed Engl ; 62(24): e202303176, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37060295

ABSTRACT

Possessed with advantageous optoelectronic properties, perovskites have boosted the rapid development of solution-processed solar cells. The performance of perovskite solar cells (PSCs) is significantly weakened by the carrier loss at grain boundary grooves (GBGs); however, it receives limited attention and there lacks effective approach to solve this issue. Herein, for the first time, we constructed the tungstate/perovskite heterointerface via a "two step" in situ reaction approach that provides effective defect passivation and ensures efficient carrier dynamics at the GBGs. The exposed perovskite at grain boundaries is converted to wide-band-gap PbWO4 via an in-situ reaction between Pb2+ and tungstate ions, which passivate defects due to the strong ionic bonding. Moreover, recombination loss is further suppressed via the heterointerface energetics modification based on an additional transformation from PbWO4 to CaWO4 . PSCs based on this groove modification strategy showed good universality in both normal and inverted structure, with an improved efficiency of 23.25 % in the n-i-p device and 23.33 % in the p-i-n device. Stable power output of the modified device could maintain 91.7 % after around 1100 h, and the device efficiency could retain 92.5 % after aging in air for around 2110 h, and 93.1 % after aging at 85 °C in N2 for 972 h.

9.
ChemSusChem ; 15(21): e202201473, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36102250

ABSTRACT

Organic-inorganic hybrid perovskites have emerged in the last decade as promising semiconductors due to the excellent optoelectronic properties. This kind of perovskites exhibited respectable photocatalytic activities toward potential application in battery; however, the instability issue still hindered their practical use. Herein, a hybrid perovskite material, 4,4'-ethylenedipyridinium lead bromide [(4,4'-EDP)Pb2 Br6 ], was assembled onto the carbon materials to function as photoelectrode of the Li-oxygen battery. The strong cation-π interactions between the A-site cations enabled this hybrid perovskite to endure the cycling process as well as the exposure to battery electrolyte and oxygen. Benefitting from the photo-generated carriers of the photoelectrode under illumination, the formation/decomposition of the discharge product was accelerated, thus leading to a reduced overpotential from 1.3 V to an optimized 0.5 V compared to the Li-oxygen battery without illumination. The overpotential could be maintained lower than 0.9 V after cycling for 170 h. Furthermore, when exposed to the sunlight, the charging voltage was reduced by over 0.2 V. The intrinsic stability and strong light absorption of perovskites together with the optimized perovskite/carbon cathode interfaces contributed to the improved performance under different light sources without complex material design, which shed light on the exploration of organic-inorganic hybrid perovskites in Li-oxygen battery applications.

10.
Nanoscale Res Lett ; 17(1): 51, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35553255

ABSTRACT

Driven by the urgent need for adaptive infrared (IR) electrochromic devices, the improvement in electrochromic performance based on polyaniline (PANI) conducting polymers has become an outstanding challenge. In recent years, the acid doping strategy has been proven to increase the IR modulation ability of PANI, in particular for the Bronsted acid doping. Herein, the effects of copper ions, a Lewis acid, on the structure and electrochromic properties of polyaniline were investigated. Compared to pure polyaniline, the Cu-doped PANI porous films show better IR modulation ability. With the increasing concentration of copper ions, the Cu-doped PANI porous films exhibit a trend in volcanic patterns for the emittance variation (∆ε), depending on the number of polarons and bipolarons. The optimal IR emissivity (ε) modulation obtained on Cu-doped PANI films shows the ∆ε modulation of 0.35 and 0.3 in the wavelength range of 8-14 µm and 2.5-25 µm, superior to previously reported pure sulfuric acid-doped PANI. Furthermore, a flexible IR electrochromic device was fabricated with the present Cu-doped PANI porous films. The modulation of the emittance variation varied between 0.513 and 0.834 (∆ε = 0.32 in ranges of wavelength 8-12 µm), suggesting the great potential for applications in military camouflage and intelligent IR thermal management. We believe that the results in this work will provide a novel perspective and avenue for improving the IR modulation ability of electrochromic devices based on polyaniline conducting polymers.

11.
J Am Chem Soc ; 144(12): 5400-5410, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35306820

ABSTRACT

In inverted perovskite solar cells (PSCs), the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is a widely used electron transport material. However, a high degree of energy disorder and inadequate passivation of PCBM limit the efficiency of devices, and severe self-aggregation and unstable morphology limit the lifespan of devices. Here, we design a series of fullerene dyads FP-Cn (n = 4, 8, 12) to replace PCBM as an electron transport layer, where [60]fullerene is linked with a terpyridine chelating group via a flexible alkyl chain of different lengths as a spacer. Among three fullerene dyads, FP-C8 shows the most enhanced molecule ordering and adhesion with the perovskite surface due to the balanced decoupling between the chelation effect from terpyridine and the self-assembly of fullerene, leading to lower energy disorder and higher morphological stability relative to PCBM. The FP-C8/C60-based devices using Cs0.05FA0.90MA0.05PbI2.85Br0.15 as a light absorber show a power conversion efficiency of 21.69%, higher than that of PCBM/C60 (20.09%), benefiting from improved electron extraction and transport as well as reduced charge recombination loss. When employing FAPbI3 as a light absorber, the FP-C8/C60-based devices exhibit an efficiency of 23.08%, which is the champion value of inverted PSCs with solution-processed fullerene derivatives. Moreover, the FP-C8/C60-based devices show better moisture and thermal stability than PCBM/C60-based devices and maintain 96% of their original efficiency after 1200 h of operation, while their counterpart PCBM/C60 maintains 60% after 670 h.

12.
Adv Mater ; 33(40): e2102246, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34396606

ABSTRACT

Quasi-2D (Q-2D) perovskites are promising materials applied in light-emitting diodes (LEDs) due to their high exciton binding energy and quantum confinement effects. However, Q-2D perovskites feature a multiphase structure with abundant grain boundaries and interfaces, leading to nonradiative loss during the energy-transfer process. Here, a more efficient energy transfer in Q-2D perovskites is achieved by manipulating the crystallization kinetics of different-n phases. A series of alkali-metal bromides is utilized to manipulate the nucleation and growth of Q-2D perovskites, which is likely associated with the Coulomb interaction between alkali-metal ions and the negatively charged PbBr6 4- frames. The incorporation of K+ is found to restrict the nucleation of high-n phases and allows the subsequent growth of low-n phases, contributing to a spatially more homogeneous distribution of different-n phases and promoted energy transfer. As a result, highly efficient green Q-2D perovskites LEDs with a champion EQE of 18.15% and a maximum brightness of 25 800 cd m-2 are achieved. The findings affirm a novel method to optimize the performance of Q-2D perovskite LEDs.

13.
Science ; 373(6554): 561-567, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34326239

ABSTRACT

Solution processing of semiconductors is highly promising for the high-throughput production of cost-effective electronics and optoelectronics. Although hybrid perovskites have potential in various device applications, challenges remain in the development of high-quality materials with simultaneously improved processing reproducibility and scalability. Here, we report a liquid medium annealing (LMA) technology that creates a robust chemical environment and constant heating field to modulate crystal growth over the entire film. Our method produces films with high crystallinity, fewer defects, desired stoichiometry, and overall film homogeneity. The resulting perovskite solar cells (PSCs) yield a stabilized power output of 24.04% (certified 23.7%, 0.08 cm2) and maintain 95% of their initial power conversion efficiency (PCE) after 2000 hours of operation. In addition, the 1-cm2 PSCs exhibit a stabilized power output of 23.15% (certified PCE 22.3%) and keep 90% of their initial PCE after 1120 hours of operation, which illustrates their feasibility for scalable fabrication. LMA is less climate dependent and produces devices in-house with negligible performance variance year round. This method thus opens a new and effective avenue to improving the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.

14.
Small ; 17(32): e2102368, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34174144

ABSTRACT

Flexible perovskite solar cells (f-PSCs) have been attracting tremendous attention due to their potentially commercial prospects in flexible energy system and mobile energy system. Reducing the energy barriers and charge extraction losses at the interfaces between perovskite and charge transport layers is essential to improve both efficiency and stability of f-PSCs. Herein, 4-trifluoromethylphenylethylamine iodide (CF3 PEAI) is introduced to form a 2D perovskite at the interface between perovskite and hole transport layer (HTL). It is found that the 2D perovskite plays a dual-functional role in aligning energy band between perovskite and HTL and passivating the traps in the 3D perovskite, thus reducing energy loss and charge carrier recombination at the interface, facilitating the hole transfer from perovskite to the Spiro-OMeTAD. Consequently, the photovoltaic performance of f-PSCs is significantly improved, leading to a power conversion efficiency (PCE) of 21.1% and a certified PCE of 20.5%. Furthermore, the long-term stability of f-PSCs is greatly improved through the protection of 2D perovskite layer to the underlying 3D perovskite. This work provides an excellent strategy to produce efficient and stable f-PSCs, which will accelerate their potential applications.

15.
Cancer Cell Int ; 21(1): 27, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413401

ABSTRACT

BACKGROUND: Increasing studies have revealed that circular RNAs (CircRNAs) make great contributions to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A, in glioma. METHODS: Firstly, reverse transcription-polymerase chain reaction (RT-PCR) was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical-pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and CircPIP5K1A overexpression and knockdown cell models were constructed. Subsequently, cell proliferation and viability were detected by the CCK8 method and BrdU staining. Cell apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (Caspase3, Bax, and Bcl2) and epithelial-mesenchymal transition (EMT) markers (E-cadherin, Vimentin, and N-cadherin) was determined by western blot or RT-PCR. RESULTS: The results manifested that CircPIP5K1A was upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated glioma cell proliferation, invasion, and EMT and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A upregulated TCF12 and PI3K/AKT activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while the dual-luciferase reporter assay and RNA immunoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3'-untranslated region (UTR) of TCF12. CONCLUSIONS: Overall, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates glioma evolvement by modulating the miR-515-5p-mediated TCF12/PI3K/AKT axis.

16.
Adv Sci (Weinh) ; 7(24): 2002445, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344132

ABSTRACT

Tailoring the organic spacing cations enables developing new Ruddlesden-Popper (RP) perovskites with tunable optoelectronic properties and superior stabilities. However, the formation of highly crystallized RP perovskites can be hindered when the structure of organic cations become complex. Strategies to regulate crystal growing process and grains quality remain to be explored. In this study, mixing Rb+ ions in precursor solution is reported to significantly promote the crystallinity of phenylethylammonium (PEA+) based RP perovskites without impacting on the major orientation of perovskite grains, which leads to increased power conversion efficiencies from 12.5% to 14.6%. It is found that the added Rb+ ions prefer to accumulate at crystal growing front and form Rb+ ions-rich region, which functions as mild crystal growth inhibitor to retard the absorption and diffusion of organic cations at growing front and hence regulates crystal growing rate. The retarded crystal growth benefits PEA-based RP perovskite films with elevated crystal qualities and prolonged carrier recombination lifetimes. Similar increased crystallinity and photovoltaic performance are achieved in other RP perovskites with non-linear organic cations such as phenylmethylammonium (PMA+), 1-(2-naphthyl)-methanammoniun (NMA+) by adding Rb+ ions, demonstrating using a small amount of growth inhibitor as a general route to regulate crystal growth.

17.
Phys Chem Chem Phys ; 22(43): 25264-25271, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33135703

ABSTRACT

X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM) and X-ray diffraction (XRD) were applied to investigate the electronic structure and molecular packing of C8-BTBT on HOPG with an ultrathin C60 interlayer. It was found that C8-BTBT displays a Vollmer-Weber (V-W) growth mode on HOPG, with an ultrathin C60 interlayer (0.7 nm). Compared to the uniform lying-down growth mode as directly grown on HOPG, the C8-BTBT molecules here adopt a lying-down orientation at low coverage with some small tilt angles because the π-π interaction between C8-BTBT and HOPG is partly disturbed by the C60 interlayer, delivering a higher highest occupied molecular orbital (HOMO) in C8-BTBT. An interface dipole of 0.14 eV is observed due to electron transport from C8-BTBT to C60. The upward and downward band bending in C8-BTBT and C60, respectively, near the C8-BTBT/C60 interface reduces the hole transport barrier at the interface, facilitating the hole injection from C60 to C8-BTBT, while a large electron transfer barrier from C60 to C8-BTBT is detected at this interface, which effectively limits electron injection from C60 to C8-BTBT. The HOMO of C8-BTBT near the interface is largely lifted up by the C60 insertion layer, which causes a p-doping effect and increases the hole mobility in C8-BTBT. Furthermore, owing to the lowest occupied molecular orbital (LUMO) of C60 residing in the gap of C8-BTBT, charge transfer occurs between C60 and the trap states in C8-BTBT to effectively passivate the trapping states. Our efforts aid a better understanding of the electron structure and film growth of anisotropic molecules and provide a useful strategy to improve the performance of C8-BTBT-based devices.

18.
ACS Appl Mater Interfaces ; 12(28): 32099-32105, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32603081

ABSTRACT

Energy band alignments at heterostructure interfaces play key roles in device performance, especially between two-dimensional atomically thin materials. Herein, van der Waals PbI2-MoSe2 heterostructures fabricated by in situ PbI2 deposition on monolayer MoSe2 are comprehensively studied using scanning tunneling microscopy/spectroscopy, atomic force microscopy, photoemission spectroscopy, and Raman and photoluminescence (PL) spectroscopy. PbI2 grows on MoSe2 in a quasi layer-by-layer epitaxial mode. A type-II interface band alignment is proposed between PbI2 and MoSe2 with the conduction band minimum (valence band maximum) located at PbI2 (MoSe2), which is confirmed by first-principles calculations and the existence of interfacial excitons revealed using temperature-dependent PL. Our findings provide a scalable method to fabricate PbI2-MoSe2 heterostructures and new insights into the electronic structures for future device design.

19.
Angew Chem Int Ed Engl ; 59(31): 12931-12937, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32367688

ABSTRACT

Halide perovskites have received attention in the field of photocatalysis owing to their excellent optoelectronic properties. However, the semiconductor properties of halide perovskite surfaces and the influence on photocatalytic performance have not been systematically clarified. Now, the conversion of triose (such as 1,3-dihydroxyacetone (DHA)) is employed as a model reaction to explore the surface termination of MAPbI3 . By rational design of the surface termination for MAPbI3 , the production rate of butyl lactate is substantially improved to 7719 µg g-1 cat. h-1 under visible-light illumination. The MAI-terminated MAPbI3 surface governs the photocatalytic performance. Specially, MAI-terminated surface is susceptible to iodide oxidation, which thus promotes the exposure of PbII as active sites for this photocatalysis process. Moreover, MAI-termination induces a p-doping effect near the surface for MAPbI3 , which facilitates carrier transport and thus photosynthesis.

20.
ACS Appl Mater Interfaces ; 12(1): 989-996, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31818105

ABSTRACT

The direct band gap CsPbBr3 perovskite is regarded as a promising alternative for low-cost and high-performance X-ray radiation detectors. Despite the fact that CsPbBr3 nanocrystals have been shown to be good scintillators in the indirect conversion mode, the direct X-ray conversion with CsPbBr3 single crystals is expected to yield higher spatial resolution. Here, rubidium (Rb) doping is demonstrated to be an efficient approach to improve carrier transport and X-ray detection performance in the direct-conversion X-ray detectors based on Cs(1-x)RbxPbBr3 single crystals. Electrical properties' characterizations as combined with X-ray photoelectron spectroscopy (XPS) measurements have revealed that Rb doping in Cs(1-x)RbxPbBr3 single crystals can enhance the atomic interaction and orbital coupling between Pb and Br atoms, leading to an enhancement of carrier transport and X-ray detection performance. X-ray detectors based on a small amount (0.037%) of Rb-doped Cs(1-x)RbxPbBr3 single crystals exhibited a high X-ray sensitivity of 8097 µC Gyair-1 cm-2. This work offers a feasible strategy to improve the X-ray detection performance by chemical doping in all-inorganic perovskite X-ray detectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...