Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(40): 14632-14639, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37786921

ABSTRACT

Energetic materials (EMs) have been widely employed in both military and civilian areas for nearly two centuries. The introduction of high-energy azide anions to assemble energetic metal-organic frameworks (EMOFs) is an efficient strategy to enhance energetic properties. However, azido-based EMOFs always suffer low stabilities to external mechanical stimulation. Herein, we employed an in situ hydrothermal reaction as a technique to refine azide anions with a neutral triazole-cyano-based ligand TrzAt (TrzAt = 2-(1H-1,2,4-triazol-1-yl)acetonitrile) to yield two tetrazole-based EMOFs, namely, [ZnBr(trmetz)]n1 and [Cd(trmetz)2]n2 (Htrmetz = 5-(1,2,4-triazol-1-ylmethyl)-1H-tetrazole). Compound 1 features a closely packed 2D layered network, while compound 2 exhibits a 3D architecture. With azide anions inlaid into a nitrogen-rich and chelating ligand in the EMOFs, compounds 1 and 2 present remarkable decomposition temperatures (Tdec ≥ 300 °C), low impact sensitivities (IS ≥ 32 J) and low friction sensitivities (FS ≥ 324 N). The calculated heat of detonation (ΔHdet) values of 1 and 2 are 3.496 and 4.112 kJ g-1, respectively. In particular, the ΔHdet value of 2 is higher than that of traditional secondary explosives such as 2,4,6-trinitrotoluene (TNT, ΔHdet = 3.720 kJ g-1). These results indicate that EMOFs 1 and 2 may serve as potential replacements for traditional secondary explosives. This work provides a simple and effective strategy to obtain two EMOFs with satisfactory energy densities and reliable stabilities through an in situ hydrothermal technique for desensitization of azide anions.

2.
Dalton Trans ; 52(3): 818-824, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36594594

ABSTRACT

The design and synthesis of energetic materials (EMs) with high energy and reliable stabilities has attracted much attention in the field of EMs. In this work, we employed a strategy of the coordination polymerization of mild dicyanamide ions (DCA-), two isomeric ligands 1-methyl-5-aminotetrazole (1-MAT) and 2-methyl-5-aminotetrazole (2-MAT) to construct energetic coordination polymers (ECPs). Four new ECPs {[Co(DCA)2(1-MAT)2]·H2O}n1, [Cu(DCA)2(1-MAT)]n2, [Cd(DCA)2(1-MAT)2]n3 and [Cd(DCA)2(2-MAT)2]n4 were successfully synthesized through solvent evaporation routes. Compounds 1 and 4 display 1D chains, while 2 and 3 exhibit 2D-layered structures. Compounds 1-3 with the 1-MAT ligand all exhibit reliable thermal stabilities (> 200 °C). The calculated heats of detonation (ΔHdet) of 1-3 are all higher than 1.4 kJ g-1, which are higher than traditional explosive TNT (1.22 kJ g-1) and the reported ECP AgMtta (HMtta = 5-methyl-1H-tetrazole, ΔHdet = 1.32 kJ g-1). Furthermore, sensitivity testing demonstrates that 1-4 features low mechanical sensitivity to external mechanical action in contrast with the extremely sensitive azide-based ECPs [Cu3(2-MAT)2(N3)6]n. In addition, compound 2 shows hypergolic properties via an 'oxidizer-fuel' drop experiment, demonstrating its application prospects in the field of propellants. This work details an approach of synthesizing multipurpose ECPs with reliable stabilities by introducing mild dicyanamide anions into nitrogen-rich skeletons.

SELECTION OF CITATIONS
SEARCH DETAIL
...