Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 230: 114099, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35007859

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is considered as one of the most dangerous clinical pathogens. Biofilms forming ability of MRSA is also a major cause of drug resistance. Hence, it is in urgent need to develop novel antibacterial/antibiofilm drugs. Fascaplysin with a unique cationic five-ring coplanar backbone is emerging as a potential antibacterial compound. In this study, aiming at developing novel and more effective agents, a series of fascaplysin derivatives and their corresponding ß-carboline precursors have been synthesized. Then their antibacterial/antibiofilm activity and mechanisms against MRSA were investigated for the first time. The results showed that most fascaplysins rather than ß-carboline precursors exhibit superior antimicrobial activity against MRSA ATCC43300, demonstrating the important role of cationic five-ring coplanar backbone playing in antibacterial activity. Among them, 14 and 18 are the most potent compounds with MIC value of 0.098 µg/ml (10-fold lower than vancomycin), and 18 featuring the lowest toxicity. Subsequent mechanisms exploration indicates that 18 has relatively stronger ability to destroy bacterial cell wall and membrane, higher binding affinity to bacterial genomic DNA. Molecular docking study revealed that besides the key role of cationic five-ring coplanar backbone, introduction of N-aryl amide at 9-position of fascaplysin promoted the combination of compound 18 and DNA via additional π-π stacking and hydrogen bonding of the naphthyl group. Moreover, fascaplysins could inhibit MRSA biofilm formation in vitro and bacterial infection in vivo. All these results illustrate that fascaplysin derivative 18 is a strong and safe multi-target antibacterial agent, which makes it an attractive candidate for the treatment of MRSA and its biofilm infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Biofilms , DNA , Indoles , Microbial Sensitivity Tests , Molecular Docking Simulation
2.
Antibiotics (Basel) ; 10(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672669

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) and its biofilms infection is still a serious threat to global health. It is urgent to develop efficient drugs by repositioning or designing drugs to solve this problem. In this study, the antibacterial/biofilm activity and mechanisms of ivermectin (D) and its 4″-position amino substitution derivative (D4) against MRSA were investigated. The minimum inhibitory concentration (MIC) of D was 20 µg/mL, which is four times higher than D4 (MIC = 5 µg/mL). The mechanism research demonstrated that D4 was more potent than D at destroying bacterial cell wall, permeating cell membrane (6.25-36.0% vs 1.92-6.04%) and binding to MRSA genomic DNA. Moreover, after incubation with 10-40 µg/mL D4 for 24 h, the percentages of biofilm decreased by 21.2-92.9%, which was more effective than D (no significant change at 40 µg/mL). The antibiofilm effect is achieved by regulating the expression of related genes (RSH, relQ, rsbU, sigB, spA, and icaD). Additionally, though the higher hemolysis makes D4 a safety risk for intravenous injection, other administration options could be considered as well. Therefore, all the results have indicated that D4 may be a potential candidate compound for the treatment of MRSA and its biofilm infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...