Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2401766, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837621

ABSTRACT

Multifunctional electrocatalysts are required for diverse clean energy-related technologies (e.g., electrochemical CO2 reduction reaction (CO2RR) and metal-air batteries). Herein, a nitrogen and fluorine co-doped carbon nanotube (NFCNT) is reported to simultaneously achieve multifunctional catalytic activities for CO2RR, oxygen reduction reaction (ORR), and oxygen evolution reaction (OER). Theoretical calculations reveal that the superior multifunctional catalytic activities of NFCNT are attributed to the synergistic effect of nitrogen and fluorine co-doping to induce charge redistribution and decrease the energy barrier of rate-determining step for different electrocatalytic reactions. Furthermore, the rechargeable Zn-air battery (ZAB) with NFCNT electrode delivers a high peak power density of 230 mW cm-2 and superior durability over 100 cycles, outperforming the ZAB with Pt/C+RuO2 based electrodes. More importantly, a self-driven CO2 electrolysis unit powered by the as-assembled ZABs is developed, which achieves 80% CO Faraday efficiency and 60% total energy efficiency. This work provides a new insight into the exploration of highly efficient multifunctional carbon-based electrocatalysts for novel energy-related applications.

2.
Nat Commun ; 14(1): 1713, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973294

ABSTRACT

The functions of the influenza virus neuraminidase has been well documented but those of the mammalian neuraminidases remain less explored. Here, we characterize the role of neuraminidase 1 (NEU1) in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models. We find that NEU1 is significantly upregulated in the fibrotic kidneys of patients and mice. Functionally, tubular epithelial cell-specific NEU1 knockout inhibits epithelial-to-mesenchymal transition, inflammatory cytokines production, and collagen deposition in mice. Conversely, NEU1 overexpression exacerbates progressive renal fibrosis. Mechanistically, NEU1 interacts with TGFß type I receptor ALK5 at the 160-200aa region and stabilizes ALK5 leading to SMAD2/3 activation. Salvianolic acid B, a component of Salvia miltiorrhiza, is found to strongly bind to NEU1 and effectively protect mice from renal fibrosis in a NEU1-dependent manner. Collectively, this study characterizes a promotor role for NEU1 in renal fibrosis and suggests a potential avenue of targeting NEU1 to treat kidney diseases.


Subject(s)
Kidney Diseases , Neuraminidase , Ureteral Obstruction , Animals , Male , Mice , Fibrosis , Gene Expression , Kidney/metabolism , Kidney Diseases/pathology , Mice, Inbred C57BL , Neuraminidase/genetics , Neuraminidase/metabolism , Ureteral Obstruction/metabolism
3.
iScience ; 14: 312-322, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-30952492

ABSTRACT

The application of conducting polymers (CPs) in energy storage systems is greatly limited by insufficient reversibility and stability. Here, we successfully incorporated functionalized dopants (Fe(CN)63- [FCN] and PO43- ions) in CPs matrixes to achieve a preferable electrochemical performance. A stable cation inserting/expulsing behavior of surface-doped polycarbazole (PCz) is demonstrated in our work, where doping levels and semiconductor properties of PCz are effectively controlled to adjust their redox properties and stability. With carbon nanotube (CNT) films as the substrate, the CNT/PCz:FCN composite is initially adopted as a free-standing catalytic electrode in Li-O2 cells. The molecule-level dispersed FCN dopants on the surface can work as bifunctional redox mediators on the charge-discharge process. Thus, this composite can not only achieve a low charge plateau of 3.62 V and a regular growth of capacities from 1,800 to 4,800 mAh/gCNT, but also maintain the most of charge voltages under 4.0 V for 150 cycles.

4.
J Org Chem ; 83(12): 6769-6775, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29767516

ABSTRACT

A specific N-alkylation of 2-hydroxypyridines is achieved by reacting with organohalides under catalyst- and base-free conditions. The observed HX-facilitated conversion of pyridyl ether intermediates to 2-pyridone products may account for the success and specific N-alkylation of the reaction under the unexpectedly simple conditions. This new reaction may provide a useful alternative for the synthesis of 2-pyridones and analogous structures because of its >99% N-selectivity, relatively broad scopes of both substrates, and no mandatory use of catalysts and bases.

SELECTION OF CITATIONS
SEARCH DETAIL
...