Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(43): 15391-15400, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37853736

ABSTRACT

Onion-like carbon (OLC) is a kind of carbon material with a graphene-like structure and large interlayer spacing, favorable to a good lubricating performance. Herein, a facile method is presented for the preparation of functionalized OLC nanoparticles from candle soot with surface modification. The OLC nanoparticles are collected from combustion soot with candle burning via a simple heat treatment, and then the zwitterionic polymer (polyethylenimine-quaternized derivative, PEIS) can self-assemble onto the OLC surface with epigallocatechin gallate via Michael addition and Schiff-base reaction, thus obtaining PEIS-functionalized OLC nanoparticles (PEIS@OLC). The grafting zwitterionic polymer PEIS endows the OLC nanoparticles with good hydrophilic performance, so the as-obtained PEIS@OLC exhibits outstanding dispersion and lubricating property as a water-based lubricant additive. Compared to pure water, the average coefficient of friction decreases to 0.110 from 0.512, and the corresponding wear volume is reduced by 61.02% with 1.5 wt % addition. The improved lubricating property is mainly due to the synergetic effect of the protective film induced by the tribochemical reaction and the hydration film of zwitterionic polymer PEIS. Besides, the OLC nanoparticles could also display the nanoscale rolling and repairing effects at the friction contact interface, resulting in reduction of friction and wear.

2.
J Agric Food Chem ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038745

ABSTRACT

Sustainable agriculture requires insecticides that are selective between insects and mammals and even between harmful and beneficial insects. Lepidoptera includes the largest number of insect pests that threaten crops, and Hymenoptera contains the natural enemies for these pests. Discovery of lepidopteran-specific molecular targets is one route to develop such selective pesticides. Group h chitinase (Chi-h) is an ideal target for lepidopteran-specific insecticides because it is only distributed in Lepidoptera and is critical to their molting processes. This minireview focuses on the latest progress in developing Chi-h as a lepidopteran-specific insecticide target. We describe the biological function, crystal structure, and small-molecule inhibitors of the enzyme. Notably, two unique pockets were discovered in the crystal structure of Chi-h for the binding of the selective inhibitors, phlegmacin B1 and lynamicin B. Moreover, lynamicin B was found to exhibit significant insecticidal activity toward lepidopteran pests but is harmless toward their natural enemies. These findings are advancing the development of selective insecticides to meet the needs of sustainable agriculture.

3.
Nat Commun ; 12(1): 5054, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34417451

ABSTRACT

On the >1 µm scale the morphology of semicrystalline plastics like polyethylene or Nylon features spherulites, "shish-kebabs", cylinddrites and other crystalline aggregates which strongly affect mechanical and other material properties. Current imaging techniques give only a 2D picture of these objects. Here we show how they can be visualized in 3D using fluorescent labels and confocal microscopy. As a result, we see spherulites in 3D, both in neat polymers and their nanocomposites, and observe how unevenly nanoparticles and other additives are distributed in the material. Images of i-polypropylene and biodegradable poly(lactic acid) reveal previously unsuspected morphologies such as "vases" and "goblets", nonspherical "spherulites" and, unexpectedly, "shish-kebabs" grown from quiescent melt. Also surprisingly, in nanocomposite sheets spherulite nucleation is seen to be copied from one surface to another, mediated by crystallization-induced pressure drop and local melt-flow. These first results reveal unfamiliar modes of self-assembly in familiar plastics and open fresh perspectives on polymer microstructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...