Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Wei Sheng Yan Jiu ; 52(6): 907-911, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38115654

ABSTRACT

OBJECTIVE: Comparative analysis of two method for determining fat and analysis of fatty acid content in tea samples. METHODS: The content of freefatand total fat in tea was determined by Soxhlet extraction method and acid hydrolysis method, and the content of fatty acids were determined by gas chromatography. The composition and content of fatty acids in 21 tea samples from 5 regions were analyzed. RESULTS: The freefat content of tea determined by Soxhlet extraction method was significantly lower than that determined by acid hydrolysis method. The totalfat content in tea determined by acid hydrolysis method was consistent with the total amount of fatty acids determined by gas chromatography, and their content conformed to the logical relationshipsimultaneously. The totalfat content in tea ranged from 0.6 to 4.1 g/100 g, which in green tea, white tea, yellow tea, and black tea were 2.2, 1.8, 1.6 and 0.6 g/100 g, respectively. The content of free fat in tea was less than 58%, with 42%-80% of the fat existing in a bound form. The fatty acids in tea were mainly unsaturated fatty acids, accounting for 67.52%-99.03% of the total fatty acids. There were differences in the composition of fatty acids in different types of tea, with the proportion of unsaturated fatty acids in yellow tea accounting for 98.84% of the total fatty acids, which was significantly higher than that of green tea, white tea, and black tea. The fatty acids with high content in green tea(except Tang chi xiaolan tea, Bawangjian green tea and Liuxi yuye tea)were α-linoleic acid, linoleic acid, and palmitic acid. CONCLUSION: Theacid hydrolysis method is more suitable for the determination of fat in tea samples. The composition and content of fat and fatty acids in tea vary depending onfactors such as the type of tea and the degree of fermentation.


Subject(s)
Fatty Acids, Unsaturated , Fatty Acids , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Tea/chemistry , Linoleic Acids
2.
Se Pu ; 41(3): 233-240, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-36861206

ABSTRACT

Quaternary ammonium compounds (QACs) are a class of cationic surfactants that can be used as the main active ingredient of disinfectants. The increased use of QACs is concerning as exposure from inhalation or ingestion to these compounds that has been associated with adverse effects on the reproductive and respiratory systems. Humans are exposed to QACs primarily by food consumption and inhalation of air. QAC residues pose significant threats to public health. Given the importance of assessing potential residue levels for QACs in food, therefore, a method was developed for the simultaneous detection of six common QACs and one emerging QAC (Ephemora) in frozen food by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) coupled with the modified QuEChERS method. The main factors governing the response, recovery, and sensitivity of the method, including extraction solvents, types and dosages of adsorbents, apparatus conditions, and mobile phases, were optimized in the course of sample pretreatment and instrument analysis. QAC residues in frozen food were extracted using 20 mL methanol-water (90∶10, containing 0.5% formic acid) for 20 min by the vortex shock method. The mixture was ultrasonicated for 10 min and centrifuged at 10000 r/min for 10 min. A 1-mL aliquot of the supernatant was transferred to a new tube and purified using 100 mg of PSA adsorbents. After mixing and centrifugation at 10000 r/min for 5 min, the purified solution was analyzed. Target analytes were separated on an ACQUITY UPLC BEH C8 chromatographic column (50 mm×2.1 mm, 1.7 µm) at a column temperature of 40 ℃ and a flow rate of 0.3 mL/min. The injection volume was 1 µL. Gradient elution was performed using methanol and 5 mmol/L ammonium acetate solution as the mobile phases. Multiple reaction monitoring (MRM) was conducted in the positive electrospray ionization (ESI+) mode. The matrix-matched external standard method was used to quantify seven QACs. The optimized chromatography-based method completely separated the seven analytes. Good linear relationships were obtained for the seven QACs in the range of 0.1-100.0 ng/mL. The correlation coefficient (r2) ranged from 0.9971 to 0.9983. The limits of detection and limits of quantification ranged from 0.5 to 1.0 µg/kg and 1.5 to 3.0 µg/kg, respectively. Accuracy and precision were determined by spiking salmon and chicken samples with 3.0, 10.0, and 100.0 µg/kg of analytes, in compliance with the current legislation, with six replicates per determination. The average recoveries of the seven QACs ranged from 65.4% to 101%. The relative standard deviations (RSDs) were between 0.64% and 16.8%. Matrix effects of the analytes were between -27.5% and 33.4% in salmon and chicken samples after purifying using PSA. The developed method was applied to the determination of seven QACs in rural samples. QACs were detected in only one sample; the level did not exceed European Food Safety Authority specified residue limit standards. The detection method has high sensitivity, good selectivity and stability, and the results are accurate and reliable. It is suitable for the simultaneous rapid determination of seven QAC residues in frozen food. The results provide valuable information for future risk assessment studies targeting this class of compounds.


Subject(s)
Frozen Foods , Quaternary Ammonium Compounds , Humans , Male , Chromatography, Liquid , Methanol , Prostate-Specific Antigen , Tandem Mass Spectrometry
3.
Se Pu ; 39(12): 1331-1339, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34812005

ABSTRACT

Enniatins (ENNs) and beauvericin (BEA), known as emerging mycotoxins, are the toxic secondary metabolites produced by various Fusarium species. Most grain and grain-based products are contaminated with ENNs and BEA. Animals have been exposed to ENNs and BEA primarily due to consumption of cereal grains and cereal by-products. ENNs and BEA have been detected in animal-derived food and human breast milk, and they pose significant threats to public health. Therefore, more contamination data are urgently needed for the risk assessment of ENNs and BEA present in animal-derived food. To ensure the quality of animal-derived food, a method has been developed for the simultaneous detection of five emerging mycotoxins (viz. enniatin B, enniatin B1, enniatin A, enniatin A1, and beauvericin) in eggs by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) coupled with cold-induced liquid-liquid extraction (CI-LLE) and dispersive solid phase extraction (DSPE). The main factors governing the response, recovery, and sensitivity of the method, such as the type of extraction solvent, the temperature and duration of cold treatment in CI-LLE, the type and dosages of adsorbents, and apparatus conditions and the type of mobile phase used, were optimized during sample pretreatment and instrument analysis. The mycotoxin residues in eggs were extracted using 20 mL acetonitrile-water-acetic acid (79∶20∶1, v/v/v) mixture for 20 min by the vortex shock method. After mixing, the mixture was frozen for 30 min in a freezer at -40 ℃ and centrifuged for 10 min at 10000 r/min. A 2 mL aliquot of the upper acetonitrile layer was purified by using 70 mg of C18 adsorbents. After whirling, the mixtures were centrifuged at 10000 r/min for 5 min. The purified solution was then concentrated to nearly dry in nitrogen atmosphere at 40 ℃. The residues were dissolved in 1.0 mL 80%(v/v) acetonitrile aqueous solution. The target analytes were separated on an ACQUITY UPLC BEH C18 chromatographic column (100 mm×2.1 mm, 1.7 µm) at a column temperature of 40 ℃, with a flow rate of 0.3 mL/min. The injection volume was 5 µL, and gradient elution was conducted using acetonitrile and 5 mmol/L ammonium formate solution as the mobile phases. Multiple reactions monitoring (MRM) was conducted in the positive electrospray ionization (ESI +) mode. The isotope internal standard method was used for quantification of BEA, and the matrix-matched external standard method was used for quantification of four ENNs. The results of the optimized method showed that the five analytes were completely separated by using the above-mentioned chromatographic column. Good linear relationships were obtained for the five mycotoxins in the concentration range of 0.1-50.0 µg/L; the correlation coefficient (r2) ranged from 0.9983 to 0.9997. The limits of detection (LODs) ranged from 0.05 to 0.15 µg/kg, while the limits of quantification (LOQs) ranged from 0.20 to 0.50 µg/kg. Accuracy and precision experiments were conducted by spiking egg samples with known amounts of analytes at three concentration levels (0.5, 5.0, and 25.0 µg/kg, in compliance with the current legislation) with six replicates. The average recoveries of the five analytes ranged from 81.1% to 106%, and the relative standard deviations (RSDs) were between 0.27% and 9.79%. The matrix effects of the analytes were between 2.70% and 45.1% in egg samples after pretreatment by CI-LLE coupled with DSPE. The developed method was applied to the determination of five mycotoxins in rural eggs and commercial eggs. BEA was detected in most rural egg samples, with detection rates of 30.4%. None of the four ENN residues were detected. Therefore, we can conclude that the method described herein has the advantages of sensitivity, stabilization, accuracy, good recovery, and easy operation, and is suitable for the simultaneous and rapid determination of BEA and ENN residues in eggs.


Subject(s)
Depsipeptides/analysis , Eggs/analysis , Food Contamination , Animals , Chromatography, High Pressure Liquid , Food Contamination/analysis , Liquid-Liquid Extraction , Solid Phase Extraction , Tandem Mass Spectrometry
4.
Se Pu ; 38(7): 833-840, 2020 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34213291

ABSTRACT

A method for the preparation and certification of the reference material of tenuazonic acid (TeA) and tentoxin (TEN) in wheat flour was developed. This method provided methodological references to develop of standard material for analyzing alternaria toxins in grains. The wheat flour reference materials were based on wheat grains which were naturally contaminated with alternaria toxins. The certified values for TeA and TEN were determined by isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) and cooperated certification of multiple laboratories. The wheat flour reference materials were stored at room temperature, protected from light and characterized by low uncertainty. The wheat flour reference materials are currently the only wheat flour reference materials that naturally contaminate TeA and TEN, and it can be used in the evaluating related analytical methods involved in food safety risk monitoring, product quality testing and quality control measurements.


Subject(s)
Flour , Food Analysis/methods , Food Contamination , Mycotoxins , Tenuazonic Acid , Certification , Chromatography, Liquid , Flour/analysis , Food Contamination/analysis , Isotopes , Mycotoxins/analysis , Peptides, Cyclic , Tandem Mass Spectrometry , Tenuazonic Acid/analysis , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL
...