Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17447, 2024.
Article in English | MEDLINE | ID: mdl-38832029

ABSTRACT

Objective: To investigate the effect of GnRH agonist (GnRH-a) down-regulation prior to hormone replacement treatment (HRT) to prepare the endometrium in frozen embryo transfer (FET) cycles in women of different ages. Methods: This was a retrospective study, and after excluding patients with adenomyosis, endometriosis, severe endometrial adhesions, polycystic ovary syndrome (PCOS), and repeated embryo implantation failures, a total of 4,091 HRT cycles were collected. Patients were divided into group A (<35 years old) and group B (≥35 years old), and each group was further divided into HRT and GnRHa-HRT groups. The clinical outcomes were compared between groups. Results: There was no statistically significant difference in clinical outcomes between the HRT and GnRHa-HRT groups among women aged <35 years. In women of advanced age, higher rates of clinical pregnancy and live birth were seen in the GnRHa-HRT group. Logistic regression analysis showed that female age and number of embryos transferred influenced the live birth rate in FET cycles, and in women aged ≥ 35 years, the use of GnRH-a down-regulation prior to HRT improved pregnancy outcomes. Conclusions: In elderly woman without adenomyosis, endometriosis, PCOS, severe uterine adhesions, and RIF, hormone replacement treatment with GnRH agonist for pituitary suppression can improve the live birth rate of FET cycles.


Subject(s)
Down-Regulation , Embryo Transfer , Gonadotropin-Releasing Hormone , Hormone Replacement Therapy , Humans , Female , Embryo Transfer/methods , Retrospective Studies , Adult , Gonadotropin-Releasing Hormone/agonists , Pregnancy , Down-Regulation/drug effects , Hormone Replacement Therapy/methods , Age Factors , Pregnancy Outcome/epidemiology , Pregnancy Rate , Embryo Implantation/drug effects
2.
J Steroid Biochem Mol Biol ; 240: 106510, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508472

ABSTRACT

The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69 µM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 µM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 µM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.


Subject(s)
Hydrocarbons, Chlorinated , Molecular Docking Simulation , Pesticides , Animals , Humans , Rats , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/pharmacology , Structure-Activity Relationship , Female , Pesticides/chemistry , Pesticides/metabolism , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/chemistry , Pregnancy , Placenta/metabolism , Estradiol/metabolism , Estradiol/chemistry , Insecticides/chemistry , Insecticides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...