Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1402653, 2024.
Article in English | MEDLINE | ID: mdl-38860218

ABSTRACT

Banana wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is a devastating fungal disease. Biocontrol strategies hold immense potential for inhibiting the spread of Foc TR4. Here, 30 actinobacteria were isolated from soils and screened for their antagonistic activity against Foc TR4. Strain SCA4-21T was selected due to its strongest antagonistic activity against Foc TR4. Strain SCA4-21T also exhibited strong antagonistic activity against the other eight phytopathogenic fungi. The strain was identified as the genus Streptomyces according to its physiological, biochemical, and phenotypic characteristics. The phylogenetic trees of 16S rRNA sequences demonstrated that strain SCA4-21T formed a subclade with S. iranensis HM 35T and/or S. rapamycinicus NRRL B-5491T with low bootstrap values. Considering that 16S rRNAs did not provide sufficient resolution for species-level identification, the whole genome of strain SCA4-21T was sequenced. Multilocus sequence analysis (MLSA) based on five housekeeping gene alleles (atpD, gyrB, recA, rpoB, and trpB) revealed that strain SCA4-21T clustered into S. hygroscopicus subsp. hygroscopicus NBRC 13472T with 100% of bootstrap value. The analysis of the genome-based phylogeny also approved the results. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were 91.26 and 44.30%, respectively, with values below the respective species level threshold of 95 and 70%. Hence, strain SCA 4-21T represented a novel species within the genus Streptomyces, named Streptomyces luomodiensis sp. nov. The type strain is SCA4-21T (=GDMCC4.340T = JCM36555T). By the CAZymes analysis, 348 carbohydrate-active enzymes (CAZymes) were detected, including 15 chitinases and eight ß-1,3-glucanases. The fermentation broth of strain SCA4-21T, exhibiting strong antagonistic activity against Foc TR4, demonstrated high activities of chitinase and ß-1,3-glucanase, which might be involved in antifungal activity. Our results showed an innovative potential biocontrol agent for managing plant fungal diseases, specifically banana fusarium wilt.

2.
Plant Physiol Biochem ; 210: 108602, 2024 May.
Article in English | MEDLINE | ID: mdl-38608506

ABSTRACT

Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.


Subject(s)
Calcium , Soil , Calcium/metabolism , Crops, Agricultural , Fertilizers , Hydrogen-Ion Concentration , Plant Physiological Phenomena , Soil/chemistry
3.
Microbiol Res ; 283: 127694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520836

ABSTRACT

Tomato fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a highly destructive disease, resulting in severe economic losses of global tomato production annually. An eco-friendly alternative to chemical fungicide using biological control agents (BCAs) is urgently needed. Here, Bacillus siamensis QN2MO-1 was isolated from Noli fruit and had a strong antagonistic activity against Fol in vitro and in vivo. Strain QN2MO-1 also exhibited a broad-spectrum antifungal activity against the selected 14 phytopathogenic fungi. The crude protein produced by strain QN2MO-1 could inhibit the spore germination of Fol and destroy the spore structure. It was closely related with the generation of chitinase and ß-1,3-glucanase secreted by strain QN2MO-1. In a pot experiment, the application of B. siamensis QN2MO-1 effectively alleviated the yellowing and wilting symptoms of tomato plants. The disease index and incidence rate were decreased by 72.72% and 80.96%, respectively. The rhizospheric soil in tomato plants owed a high abundance of microbial community. Moreover, strain QN2MO-1 also enhanced the plant growth and improved the fruit quality of tomato. Therefore, B. siamensis QN2MO-1 will be explored as a potential biocontrol agent and biofertilizer.


Subject(s)
Bacillus , Fusarium , Solanum lycopersicum , Fruit , Plant Diseases/prevention & control , Plant Diseases/microbiology
4.
Front Plant Sci ; 14: 1289959, 2023.
Article in English | MEDLINE | ID: mdl-37941669

ABSTRACT

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race4 (Foc TR4) is one of the most destructive soil-borne fungal diseases and currently threatens banana production around the world. Until now, there is lack of an effective method to control banana Fusarium wilt. Therefore, it is urgent to find an effective and eco-friendly strategy against the fungal disease. In this study, a strain of Trichoderma sp. N4-3 was isolated newly from the rhizosphere soil of banana plants. The isolate was identified as Trichoderma parareesei through analysis of TEF1 and RPB2 genes as well as morphological characterization. In vitro antagonistic assay demonstrated that strain N4-3 had a broad-spectrum antifungal activity against ten selected phytopathogenic fungi. Especially, it demonstrated a strong antifungal activity against Foc TR4. The results of the dual culture assay indicated that strain N4-3 could grow rapidly during the pre-growth period, occupy the growth space, and secrete a series of cell wall-degrading enzymes upon interaction with Foc TR4. These enzymes contributed to the mycelial and spore destruction of the pathogenic fungus by hyperparasitism. Additionally, the sequenced genome proved that strain N4-3 contained 21 genes encoding chitinase and 26 genes encoding ß-1,3-glucanase. The electron microscopy results showed that theses cell wall-degrading enzymes disrupted the mycelial, spore, and cell ultrastructure of Foc TR4. A pot experiment revealed that addition of strain N4-3 significantly reduced the amount of Foc TR4 in the rhizosphere soil of bananas at 60 days post inoculation. The disease index was decreased by 45.00% and the fresh weight was increased by 63.74% in comparison to the control. Hence, Trichoderma parareesei N4-3 will be a promising biological control agents for the management of plant fungal diseases.

5.
Sci Total Environ ; 903: 166645, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37657542

ABSTRACT

Bananas are the world's important fruit and staple crop in the developing countries. Cadmium (Cd) contamination in soils results in the decrease of crop yield and food safety. Bioremediation is an environmental-friendly and effective measure using Cd-tolerant plant growth promoting rhizobacteria (PGPR). In our study, a Cd-resistant PGPR Bacillus cereus 2-7 was isolated and identified from a discarded gold mine. It could produce multiple plant growth promoting biomolecules such as siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and phosphatase. The extracellular accumulation was a main manner of Cd removal. Surplus Cd induced the expression of Cd resistance/transport genes of B. cereus 2-7 to maintain the intracellular Cd homeostasis. The pot experiment showed that Cd contents decreased by 50.31 % in soil, 45.43 % in roots, 56.42 % in stems and 79.69 % in leaves after the strain 2-7 inoculation for 40 d. Bacterial inoculation alleviated the Cd-induced oxidative stress to banana plantlets, supporting by the increase of chlorophyll contents, plant height and total protein contents. The Cd remediation mechanism revealed that B. cereus 2-7 could remodel the rhizosphere bacterial community structure and improve soil enzyme activities to enhance the immobilization of Cd. Our study provides a Cd-bioremediation strategy using Cd-resistant PGPR in tropical and subtropical area.

6.
J Fungi (Basel) ; 9(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37754994

ABSTRACT

PURPOSE: This study aimed to identify the antagonistic bacteria from the rhizosphere of healthy bananas that can effectively suppress the Fusarium wilt of banana, and to further investigate the inhibitory mechanism. METHOD: The primary and secondary screening techniques were implemented using the double-plate and fermentation antagonism methods. The strain was identified based on physiological and biochemical tests, 16S rRNA gene sequencing, and specific gene amplification. The effects of crude extract on the protein content, lipid peroxidation, and pectinase activity of mycelia were determined from the identified isolates. RESULTS: Two antagonistic bacteria, JF-4 and JF-5, were screened and initially identified as Bacillus subtilis (GenBank: OR125631) and B. amylum (GenBank: OR125632). The greenhouse experiment showed that the biological control efficiency of the two antagonists against the Fusarium wilt of banana was 48.3% and 40.3%, respectively. The catalase content produced by lipid peroxidation increased significantly after treatment with the crude extracts of JF-4 and JF-5 at concentrations of 0.69 µmol/L and 0.59 µmol/L, respectively. The protein and ergosterol content and pectinase activity decreased significantly. The two antagonistic bacteria might inhibit the growth of pathogens by enhancing lipid peroxidation and decreasing the synthesis of cell metabolites. Twenty compounds were identified by gas chromatography-mass spectrometry (GC-MS). B. subtilis JF-4 was further sequenced and assembled to obtain a complete circular chromosome genome of 681,804,824 bp. The genome consisted of a 4,310,825-bp-long scaffold. CONCLUSION: The findings of this study may help elucidate the mechanism behind this biocontrol isolate.

7.
Front Microbiol ; 14: 1159534, 2023.
Article in English | MEDLINE | ID: mdl-37362932

ABSTRACT

Fusarium wilt of bananas (FWB) is seriously affecting the sustainable development of the banana industry and is caused by the devastating soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Biological control is a promising strategy for controlling Fusarium wilt in bananas. We previously identified Streptomyces hygroscopicus subsp. hygroscopicus 5-4 with strong antifungal activity against the FWB. The most possible antimicrobial mechanism of strain 5-4 was explored using the metabolomics approach, light microscopy imaging, and transmission electron microscopy (TEM). The membrane integrity and ultrastructure of Foc TR4 was damaged after extract treatment, which was supported by the degradation of mycelium, soluble protein content, extracellular reducing sugar content, NADH oxidase activity, malondialdehyde content, mitochondrial membrane potential, and mitochondrial respiratory chain complex enzyme activity. The extracts of strain 5-4 cultivated at different times were characterized by a liquid chromatography-mass spectrometer (LC-MS). 647 known metabolites were detected in the extracts of strains 5-4. Hygromycin B, gluten exorphin B4, torvoside G, (z)-8-tetradecenal, piperitoside, sarmentosin, pubescenol, and other compounds were the main differential metabolites on fermentation culture for 7 days. Compared with strain 5-4 extracts, hygromycin B inhibited the mycelial growth of Foc TR4, and the EC50 concentration was 7.4 µg/mL. These results showed that strain 5-4 could destroy the cell membrane of Foc TR4 to inhibit the mycelial growth, and hygromycin B may be the key antimicrobial active metabolite. Streptomyces hygroscopicus subsp. hygroscopicus 5-4 might be a promising candidate strain to control the FWB and provide a scientific basis for the practical application of hygromycin B as a biological control agent.

8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768952

ABSTRACT

Plant height is an important and valuable agronomic trait associated with yield and resistance to abiotic and biotic stresses. Dwarfism has positive effects on plant development and field management, especially for tall monocotyledon banana (Musa spp.). However, several key genes and their regulation mechanism of controlling plant height during banana development are unclear. In the present study, the popular cultivar 'Brazilian banana' ('BX') and its dwarf mutant ('RK') were selected to identify plant height-related genes by comparing the phenotypic and transcriptomic data. Banana seedlings with 3-4 leaves were planted in the greenhouse and field. We found that the third and fourth weeks are the key period of plant height development of the selected cultivars. A total of 4563 and 10507 differentially expressed genes (DEGs) were identified in the third and fourth weeks, respectively. Twenty modules were produced by the weighted gene co-expression network analysis (WGCNA). Eight modules were positively correlated with the plant height, and twelve other modules were negatively correlated. Combining with the analysis of DEGs and WGCNA, 13 genes in the signaling pathway of gibberellic acid (GA) and 7 genes in the signaling pathway of indole acetic acid (IAA) were identified. Hub genes related to plant height development were obtained in light of the significantly different expression levels (|log2FC| ≥ 1) at the critical stages. Moreover, GA3 treatment significantly induced the transcription expressions of the selected candidate genes, suggesting that GA signaling could play a key role in plant height development of banana. It provides an important gene resource for the regulation mechanism of banana plant development and assisted breeding of ideal plant architecture.


Subject(s)
Musa , Transcriptome , Gene Expression Regulation, Plant , Plant Breeding , Gene Expression Profiling , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
9.
J Fungi (Basel) ; 8(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36547623

ABSTRACT

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most destructive banana diseases in the world, which limits the development of the banana industry. Compared with traditional physical and chemical practices, biological control becomes a promising safe and efficient strategy. In this study, strain Y1-14 with strong antagonistic activity against Foc TR4 was isolated from the rhizosphere soil of a banana plantation, where no disease symptom was detected for more than ten years. The strain was identified as Streptomyces according to the morphological, physiological, and biochemical characteristics and the phylogenetic tree of 16S rRNA. Streptomyces sp. Y1-14 also showed a broad-spectrum antifungal activity against the selected 12 plant pathogenic fungi. Its extracts inhibited the growth and spore germination of Foc TR4 by destroying the integrity of the cell membrane and the ultrastructure of mycelia. Twenty-three compounds were identified by gas chromatography-mass spectrometry (GC-MS). The antifungal mechanism was investigated further by metabolomic analysis. Strain Y1-14 extracts significantly affect the carbohydrate metabolism pathway of Foc TR4 by disrupting energy metabolism.

10.
Plant Sci ; 325: 111497, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244523

ABSTRACT

Banana is a typical starch conversion fruit. The high content of starch at harvest is quickly digested and converted to soluble sugars during the postharvest ripening process, ultimately contributing to fruit flavor. This process is regulated in a complex manner by genes and environmental factors. MaBAM9b is one of the main enzyme genes previously found by transcriptomic analysis to be highly expressed in banana fruit. However, its exact role in starch degradation remains unclear. Here, full-length MaBAM9b was isolated from banana fruit, and its subcellular localization, protein expression, and transient expression in banana fruit slices were investigated. In addition, sense and anti-sense MaBAM9b were transformed into rice (Oryza sativa L. japonica. cv. 'Nipponbare') to identify the function of MaBAM9b. MaBAM9b was 1599 bp and encoded 532 amino acids. It contained two conserved domains of PLN02803 and glycosyl hydrolase family 14 and was localized in the chloroplast. The protein expression pattern of MaBAM9b remained consistently high throughout banana fruit ripening and starch degradation. Transient overexpression or inhibition of MaBAM9b in banana fruit greatly improved or suppressed starch degradation. Genetic modification of rice indicated that overexpression of MaBAM9b greatly improved starch degradation and seed germination, while inhibition of its expression suppressed these biological processes. These results support the key role of MaBAM9b in starch degradation and provide a target gene for banana fruit quality improvement and biological breeding.


Subject(s)
Gene Expression Regulation, Plant , Musa , Plant Breeding , Musa/genetics , Musa/metabolism , Fruit/genetics , Starch/metabolism
11.
J Agric Food Chem ; 70(40): 12784-12795, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36170206

ABSTRACT

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most destructive soil-borne fungal disease. Tropical race 4 (Foc TR4), one of the strains of Foc, can infect many commercial cultivars, which represents a threat to global banana production. Currently, there are hardly any effective chemical fungicides to control the disease. To search for natural product-based fungicides for controlling banana Fusarium wilt, we identified a novel strain Streptomyces yongxingensis sp. nov. (JCM 34965) from a marine soft coral, from which a bioactive compound, niphimycin C, was isolated using an activity-guided method. Niphimycin C exhibited a strong antifungal activity against Foc TR4 with a value of 1.20 µg/mL for EC50 and obviously inhibited the mycelial growth and spore germination of Foc TR4. It caused the functional loss of mitochondria and the disorder of metabolism of Foc TR4 cells. Further study showed that niphimycin C reduced key enzyme activities of the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). It displayed broad-spectrum antifungal activities against the selected 12 phytopathogenic fungi. In pot experiments, niphimycin C reduced the disease indexes in banana plantlets and inhibited the infection of Foc TR4 in roots. Hence, niphimycin C could be a promising agrochemical fungicide for the management of fungal diseases.


Subject(s)
Biological Products , Fungicides, Industrial , Fusarium , Musa , Streptomyces , Agrochemicals , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Fusarium/genetics , Gene Expression Profiling , Guanidines , Mitochondria , Musa/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Soil , Tricarboxylic Acids
12.
Front Plant Sci ; 13: 874819, 2022.
Article in English | MEDLINE | ID: mdl-35646017

ABSTRACT

Banana (Musa spp.) is an important fruit crop cultivated in most tropical countries. Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the most destructive fungal disease. Biocontrol using endophytic microorganisms is considered as a safety and sustainable strategy. Actinomycetes have a potential for the production of diverse metabolites. Isolation of endophytic actinomycetes with high efficiency and broad-spectrum antagonism is key for exploring biocontrol agents. Our previous study showed that a total of 144 endophytic actinomycetes were isolated from different tissues of medicinal plants in Hainan, China. Especially, strain 8ZJF-21 exhibited a broad-spectrum antifungal activity. Its morphological, physiological, and biochemical characteristics were consistent with the genus Streptomyces. The phylogenetic tree demonstrated that strain 8ZJF-21 formed a distinct clade with Streptomyces malaysiensis. Average nucleotide identity (ANI) was 98.49% above the threshold of novel species. The pot experiment revealed that endophytic Streptomyces malaysiensis 8ZJF-21 could improve the plant resistance to Foc TR4 by enhancing the expression levels of defense-related and antioxidant enzyme genes. It also promoted the plant growth by producing several extracellular enzymes and metabolites. Antifungal mechanism assays showed that S. malaysiensis 8ZJF-21 extract inhibited mycelial growth and spore germination of Foc TR4 in vitro. Pathogenic cells occurred cytoplasmic heterogeneity, disappeared organelles, and ruptured ultrastructure. Sequencing and annotation of genome suggested that S. malaysiensis 8ZJF-21 had a potential of producing novel metabolites. Nineteen volatile organic compounds were obtained from the extract by Gas Chromatography-Mass Spectrometry (GC-MS). Hence, endophytic Streptomyces strains will become essential biocontrol agents of modern agricultural practice.

13.
Phytopathology ; 112(9): 1877-1885, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35471064

ABSTRACT

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most disastrous fungal diseases. Biological control is a promising strategy for controlling Fusarium wilt of banana. To explore endophytic actinomycetes as biocontrol resources against Foc TR4, antagonistic strains were isolated from different tissues of medicinal plants. Here, a total of 144 actinomycetes were isolated and belonged to Nonomuraea, Kitasatospora, and Streptomyces. Forty-three isolates exhibited antifungal activities against Foc TR4. The strain labeled with 5-4 isolated from roots of Piper austrosinense had a broad-spectrum antifungal activity by the production of chitinase and ß-1,3-glucanase and was identified as Streptomyces hygroscopicus subsp. hygroscopicus 5-4. Furthermore, disease index of banana wilt was significantly reduced by application of strain 5-4 in comparison with application of Foc TR4 alone. Exogenous application of strain 5-4 increased the expression levels of defense genes such as (PAL), peroxidase (POD), pathogenesis-related protein 1 (PR-1), hydrolytic enzymes (ß-1,3-glucanase), lysin motif receptor kinase 1 (LYK-1), and mitogen-activated protein kinase 1 (MPK-1). The antifungal mechanism assay demonstrated that extracts of strain 5-4 inhibited spore gemination and hyphal growth of Foc TR4, and caused abnormally swollen, deformity, and rupture of Foc TR4 hypha. Thus, S. hygroscopicus subsp. hygroscopicus 5-4 could be used as a potential biological agent for controlling Fusarium wilt of banana.


Subject(s)
Fusarium , Musa , Streptomyces , Antifungal Agents/pharmacology , Fusarium/genetics , Gene Expression Profiling , Musa/microbiology , Plant Diseases/microbiology , Streptomyces/genetics
14.
Appl Microbiol Biotechnol ; 106(4): 1633-1649, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35141868

ABSTRACT

Most commercial banana cultivars are highly susceptible to Fusarium wilt caused by soilborne fungus Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4). Biological control using antagonistic microorganism has been considered as an alternative method to fungicide. Our previous study showed that Streptomyces sp. SCA3-4 T had a broad-spectrum antifungal activity from the rhizosphere soil of Opuntia stricta in a dry hot valley. Here, the sequenced genome of strain SCA3-4 T contained 6614 predicted genes with 72.38% of G + C content. A polymorphic tree was constructed using the multilocus sequence analysis (MLSA) of five house-keeping gene alleles (atpD, gyrB, recA, rpoB, and trpB). Strain SCA3-4 T formed a distinct clade with Streptomyces mobaraensis NBRC 13819 T with 71% of bootstrap. Average nucleotide identity (ANI) values between genomes of strain SCA3-4 T and S. mobaraensis NBRC 13819 T was 85.83% below 95-96% of the novel species threshold, and named after Streptomyces sichuanensis sp. nov. The type strain is SCA3-4 T (= GDMCC 4.214 T = JCM 34964 T). Genomic analysis revealed that strain SCA3-4 T contained 36 known biosynthetic gene clusters of secondary metabolites. Antifungal activity of strain SCA3-4 T was closely associated with the production of siderophore and its extracts induced the apoptosis of Foc TR4 cells. A total of 12 potential antifungal metabolites including terpenoids, esters, acid, macrolides etc. were obtained by the gas chromatography-mass spectrometry (GC-MS). Greenhouse experiment indicated that strain SCA3-4 T could significantly inhibit infection of Foc TR4 in the roots and corms of banana seedlings and reduce disease index. Therefore, strain SCA3-4 T is an important microbial resource for exploring novel natural compounds and developing biopesticides to manage Foc TR4. KEY POINTS: • Strain SCA3-4 T was identified as a novel species of Streptomyces. • Siderophore participates in the antifungal regulation. • Secondary metabolites of strain SCA3-4 T improves the plant resistance to Foc TR4.


Subject(s)
Fusarium , Musa , Streptomyces , Antifungal Agents/pharmacology , Fusarium/genetics , Gene Expression Profiling , Musa/genetics , Musa/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Streptomyces/genetics
15.
Fungal Biol ; 126(3): 213-223, 2022 03.
Article in English | MEDLINE | ID: mdl-35183338

ABSTRACT

ECM33, a glycosylphosphatidylinositol (GPI)-anchored protein, is important for fungal development and infection through regulating fungal cell wall integrity, however, the functions of its orthologs in pathogenesis have not been characterized in Fusarium oxysporum. Here, we discovered a GPI-anchored protein, FocECM33, which is required for vegetative growth and virulence of Fusasium oxysporum f. sp. cubense tropical race 4 (Foc TR4). FocECM33 was highly upregulated during the early infection process of Foc TR4 in banana roots. The targeted disruption of FocECM33 led to decreased hyphal growth, increased sensitivity to cell wall stresses and reduced virulence on banana plantlets. Furthermore, ΔFocECM33 mutant demonstrated a cell morphology defect, elevated ROS production and increased chitin content. Transcriptome analysis showed that FocECM33 has a significant influence on the production of various secondary metabolites and regulation of many biosynthetic processes in Foc TR4. Taken together, it seems FocECM33 contributes to the virulence of Foc TR4 through regulating the process of hyphal growth, ROS production and chitin synthesis.


Subject(s)
Fusarium , Musa , Glycosylphosphatidylinositols , Musa/microbiology , Plant Diseases/microbiology , Virulence
16.
BMC Plant Biol ; 22(1): 34, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35038993

ABSTRACT

BACKGROUND: Banana fruits are rich in various high-value metabolites and play a key role in the human diet. Of these components, carotenoids have attracted considerable attention due to their physiological role and human health care functions. However, the accumulation patterns of carotenoids and genome-wide analysis of gene expression during banana fruit development have not been comprehensively evaluated. RESULTS: In the present study, an integrative analysis of metabolites and transcriptome profiles in banana fruit with three different development stages was performed. A total of 11 carotenoid compounds were identified, and most of these compounds showed markedly higher abundances in mature green and/or mature fruit than in young fruit. Results were linked to the high expression of carotenoid synthesis and regulatory genes in the middle and late stages of fruit development. Co-expression network analysis revealed that 79 differentially expressed transcription factor genes may be responsible for the regulation of LCYB (lycopene ß-cyclase), a key enzyme catalyzing the biosynthesis of α- and ß-carotene. CONCLUSIONS: Collectively, the study provided new insights into the understanding of dynamic changes in carotenoid content and gene expression level during banana fruit development.


Subject(s)
Carotenoids/metabolism , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks , Musa/genetics , Plant Proteins/metabolism , Transcriptome , Carotenoids/isolation & purification , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Gene Ontology , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Musa/growth & development , Musa/metabolism , Plant Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , beta Carotene/metabolism
17.
Plant Dis ; 106(1): 254-259, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34433317

ABSTRACT

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a disastrous fungal disease. Foc tropical race 4 (Foc TR4) infects almost all banana cultivars. Use of chemical fungicides caused serious environment pollution. Biological control with antagonistic microbes is a promising strategy for controlling Foc TR4. Here, strain WHL7 isolated from marine soft coral exhibited a high antifungal activity against Foc TR4. Based on the morphological and physicochemical profiles as well as the phylogenetic tree, the strain was assigned to Streptomyces sp. Fermentation broth of Streptomyces sp. WHL7 significantly increased the resistance of banana plantlets to Foc TR4 in the pot experiment. Analysis of antifungal mechanism showed that strain WHL7 extracts inhibited spore germination and mycelial growth of Foc TR4, and destroyed cell integrity and ultrastructure. Hence, Streptomyces sp. WHL7 is an important bioresource for exploring novel natural products and biofertilizer to manage Foc TR4.


Subject(s)
Anthozoa , Biological Control Agents , Fusarium , Musa , Plant Diseases , Streptomyces , Animals , Anthozoa/microbiology , Fusarium/pathogenicity , Gene Expression Profiling , Musa/microbiology , Phylogeny , Plant Diseases/microbiology , Plant Diseases/prevention & control , Streptomyces/physiology
18.
Front Microbiol ; 12: 763038, 2021.
Article in English | MEDLINE | ID: mdl-34759913

ABSTRACT

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) is globally one of the most destructive soil-borne fungal diseases. Biological control using environmental microorganisms is considered as an alternative and sustainable strategy. Actinomycetes have the potential to explore biocontrol agents due to their production of diverse metabolites. The isolation and identification of high-efficiency and broad-spectrum antagonistic actinomycetes are the key for the application of biocontrol agents. In the present study, 60 actinomycetes were obtained from the rhizosphere soil of Machilus pingii in the primitive ecological natural reserve of Hainan province, China. Seventeen isolates and their extracts exhibited significant antifungal activity against F. oxysporum TR4. Particularly, strain BITDG-11 with the strongest inhibition ability had a broad-spectrum antifungal activity. The assay of its physiological and biochemical profiles showed that strain BITDG-11 had the ability to produce IAA and siderophores and had a positive response to gelatin liquefaction and nitrate reduction. Enzyme activities of chitinase, ß-1,3-glucanase, lipase, and urease were also detected. Average nucleotide identity calculated by comparison with the standard strain genome of Streptomyces albospinus JCM3399 was 86.55% below the novel species threshold, suggesting that the strain could be a novel species. In addition, Streptomyces BITDG-11 obviously reduced the disease index of banana plantlets and promoted plant growth at 45 days post inoculation. The higher and lasting expression levels of defense genes and activities of antioxidant enzymes were induced in the roots of banana. Genome sequencing revealed that the Streptomyces BITDG-11 chromosome contained large numbers of conserved biosynthesis gene clusters encoding terpenes, non-ribosomal peptides, polyketides, siderophores, and ectoines. Fifteen bioactive secondary metabolites were further identified from Streptomyces BITDG-11 extract by gas chromatography-mass spectrometry. Dibutyl phthalate demonstrating a strong antifungal activity was the major compound with the highest peak area. Hence, Streptomyces sp. BITDG-11 has a great potential to become an essential constituent of modern agricultural practice as biofertilizers and biocontrol agents.

19.
Genome Biol ; 22(1): 316, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34784936

ABSTRACT

BACKGROUND: Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome. RESULTS: We describe a genomic variation map from 388 resequenced genomes of cassava cultivars and wild accessions. We identify 52 loci for 23 agronomic traits through a genome-wide association study. Eighteen allelic variations in heterozygosity for nine candidate genes are significantly associated with seven key agronomic traits. We detect 81 selective sweeps with decreasing heterozygosity and nucleotide diversity, harboring 548 genes, which are enriched in multiple biological processes including growth, development, hormone metabolisms and responses, and immune-related processes. Artificial selection for decreased heterozygosity has contributed to the domestication of the large starchy storage root of cassava. Selection for homozygous GG allele in MeTIR1 during domestication contributes to increased starch content. Selection of homozygous AA allele in MeAHL17 is associated with increased storage root weight and cassava bacterial blight (CBB) susceptibility. We have verified the positive roles of MeTIR1 in increasing starch content and MeAHL17 in resistance to CBB by transient overexpression and silencing analysis. The allelic combinations in MeTIR1 and MeAHL17 may result in high starch content and resistance to CBB. CONCLUSIONS: This study provides insights into allelic variation in heterozygosity associated with key agronomic traits and cassava domestication. It also offers valuable resources for the improvement of cassava and other highly heterozygous crops.


Subject(s)
Domestication , Genetic Variation , Manihot/genetics , Sequence Analysis, DNA , Chromosome Mapping , Crops, Agricultural/genetics , DNA-Binding Proteins/genetics , Genome, Plant , Genome-Wide Association Study , Nuclear Proteins/genetics , Phenotype , Phylogeny , Plant Proteins/genetics
20.
Front Microbiol ; 12: 722661, 2021.
Article in English | MEDLINE | ID: mdl-34803941

ABSTRACT

Banana is an important fruit crop. Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) seriously threatens the global banana industry. It is difficult to control the disease spread using chemical measures. In addition, commercial resistant cultivars are also lacking. Biological control is considered as a promising strategy using antagonistic microbes. Actinomycetes, especially Streptomyces, are potential sources of producing novel bioactive secondary metabolites. Here, strain SCA2-4 T with strong antifungal activity against Foc TR4 was isolated from the rhizospheric soil of Opuntia stricta in a dry hot valley. The morphological, physiological and chemotaxonomic characteristics of the strain were consistent with the genus Streptomyces. Based on the homology alignment and phylogenetic trees of 16S rRNA gene, the taxonomic status of strain SCA2-4 T exhibited a paradoxical result and low bootstrap value using different algorithms in the MEGA software. It prompted us to further discriminate this strain from the closely related species by the multilocus sequence analysis (MLSA) using five house-keeping gene alleles (atpD, gyrB, recA, rpoB, and trpB). The MLSA trees calculated by three algorithms demonstrated that strain SCA2-4 T formed a distinct clade with Streptomyces mobaraensis NBRC 13819 T . The MLSA distance was above 0.007 of the species cut-off. Average nucleotide identity (ANI) values between strain SCA2-4 T genome and two standard strain genomes were below 95-96% of the novel species threshold. Strain SCA2-4 T was assigned to a novel species of the genus Streptomyces and named as Streptomyces huiliensis sp. nov. The sequenced complete genome of SCA2-4 T encoded 51 putative biosynthetic gene clusters of secondary metabolites. Genome alignment revealed that ten gene clusters were involved in the biosynthesis of antimicrobial metabolites. It was supported that strain SCA2-4 T showed strong antifungal activities against the pathogens of banana fungal diseases. Extracts abstracted from the culture filtrate of strain SCA2-4 T seriously destroyed cell structure of Foc TR4 and inhibited mycelial growth and spore germination. These results implied that strain SCA2-4 T could be a promising candidate for biological control of banana Fusarium wilt.

SELECTION OF CITATIONS
SEARCH DETAIL
...