Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 9(1): 46, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409165

ABSTRACT

Group A Streptococcus (GAS) is a significant human pathogen that poses a global health concern. However, the development of a GAS vaccine has been challenging due to the multitude of diverse M-types and the risk of triggering cross-reactive immune responses. Our previous research has identified a critical role of PrsA1 and PrsA2, surface post-translational molecular chaperone proteins, in maintaining GAS proteome homeostasis and virulence traits. In this study, we aimed to further explore the potential of PrsA1 and PrsA2 as vaccine candidates for preventing GAS infection. We found that PrsA1 and PrsA2 are highly conserved among GAS isolates, demonstrating minimal amino acid variation. Antibodies specifically targeting PrsA1/A2 showed no cross-reactivity with human heart proteins and effectively enhanced neutrophil opsonophagocytic killing of various GAS serotypes. Additionally, passive transfer of PrsA1/A2-specific antibodies conferred protective immunity in infected mice. Compared to alum, immunization with CFA-adjuvanted PrsA1/A2 induced higher levels of Th1-associated IgG isotypes and complement activation and provided approximately 70% protection against invasive GAS challenge. These findings highlight the potential of PrsA1 and PrsA2 as universal vaccine candidates for the development of an effective GAS vaccine.

2.
Materials (Basel) ; 16(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37687753

ABSTRACT

Perovskite quantum dots (QDs) have showed excellent optoelectronic properties to extend the application range of novel solid-state lighting, such as perovskite QD based LEDs (QD-LEDs). However, the traditional device structure of perovskite QD-LEDs employed PEDOT:PSS as a hole inject layer (HIL), which impairs stability due to acidic surface characteristics. This study proposes the sputtered NiO films as an HIL to replace acidic PEDOT:PSS. The NiO films with significantly different characteristics were prepared by controlling the sputtering parameters to investigate the devices' performance of NiO-based CsPbBr3 QD-LEDs. The optimized device showed an excellent performance with maxima luminescence of 20,118 cd/m2 and an external quantum efficiency (EQE) up to 3.63%.

3.
ACS Appl Mater Interfaces ; 15(37): 44022-44032, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37622729

ABSTRACT

Bis(2-phenylpyridine)(acetylacetonate)iridium, Ir(ppy)2(acac), is a benchmark green emitter for phosphorescent organic light-emitting diodes (PhOLEDs). In this work, we reported three positional isomeric cyano-substituted Ir(ppy)2(acac) complexes, i.e., Ir(3-CN), Ir(4-CN), and Ir(10-CN), with the emission in the yellow to red region (544-625 nm). Through theoretical investigation and single-crystal analysis, it was found that the introduction of cyano substitution at various positions of the ppy ligand allows for tuning the electron distribution and coordination bond length of Ir complexes. Therefore, the charge transfer property of Ir complexes is enhanced such that the energy gap of the cyano-substituted Ir(ppy)2(acac) complexes was reduced. In addition, Ir(3-CN), Ir(4-CN), and Ir(10-CN) exhibited high PLQYs of 83, 54, and 75%, respectively, with the phosphorescence lifetime in the range of 0.79-2.08 µs. Notably, the device utilizing Ir(3-CN) as the emitter exhibited a maximum external quantum efficiency (EQE) of 25.4%, current efficiency of 56.9 cd A-1, power efficiency of 68.7 lm W-1, and brightness of 61,340 cd m-2 at 8 V. The EQE of this device remained 24.3 and 19.9% at luminances of 1,000 and 10,000 cd m-2, corresponding to the efficiency roll-off of 4.3 and 21.7%, respectively. Comparing to the Ir complexes using the ligand with an extended conjugated structure, our results demonstrated a simple molecular design strategy for phosphorescence emitters with reduced molecular weight for efficient PhOLEDs in the yellow to red color region.

4.
Nat Chem ; 13(5): 451-457, 2021 05.
Article in English | MEDLINE | ID: mdl-33875818

ABSTRACT

Recent advances in end-to-end continuous-flow synthesis are rapidly expanding the capabilities of automated customized syntheses of small-molecule pharmacophores, resulting in considerable industrial and societal impacts; however, many hurdles persist that limit the number of sequential steps that can be achieved in such systems, including solvent and reagent incompatibility between individual steps, cumulated by-product formation, risk of clogging and mismatch of timescales between steps in a processing chain. To address these limitations, herein we report a strategy that merges solid-phase synthesis and continuous-flow operation, enabling push-button automated multistep syntheses of active pharmaceutical ingredients. We demonstrate our platform with a six-step synthesis of prexasertib in 65% isolated yield after 32 h of continuous execution. As there are no interactions between individual synthetic steps in the sequence, the established chemical recipe file was directly adopted or slightly modified for the synthesis of twenty-three prexasertib derivatives, enabling both automated early and late-stage diversification.


Subject(s)
Chemistry Techniques, Synthetic/methods , Pyrazines/therapeutic use , Pyrazoles/therapeutic use , Solid-Phase Synthesis Techniques/methods , Humans , Pyrazines/pharmacology , Pyrazoles/pharmacology
5.
Vet Res ; 50(1): 9, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30717799

ABSTRACT

As a key cellular transcription factor that plays a central role in cellular responses to a broad range of stress factors, p53 has generally been considered as a host cell restriction factor for various viral infections. However, the defined roles of p53 in pseudorabies virus (PRV) replication, pathogenesis, and host responses remain unclear. In the present study, we initially constructed a p53 overexpressing a porcine kidney epithelial cell line (PK-15) to detect the effect of p53 on PRV replication in vitro. The results show that viral glycoprotein B (gB) gene copies and the titers of virus were significantly higher in p53 overexpressing PK-15 cells than in PK-15 and p53 inhibitor treated p53 overexpressing PK-15 cells. A similar result was also found in the p53 inhibitor PFT-α-treated PK-15 cells. We then examined the effects of p53 on PRV infection in vivo by using p53-knockout (p53-/-) mice. The results show that p53 knockout not only led to significantly reduced rates of mortality but also to reduced viral replication and development of viral encephalitis in the brains of mice following intracranial inoculation. Furthermore, we examined the effect of p53 knockout on the expression of the reported host cell regulators of PRV replication in the brains of mice by using RNA sequencing. The results show that p53 knockout downregulated the interferon (IFN) regulator genes, chemokine genes, and antiviral genes after PRV infection. This finding suggests that p53 positively regulates viral replication and pathogenesis both in vitro and in vivo. These findings offer novel targets of intrinsic host cell immunity for PRV infection.


Subject(s)
Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/pathogenicity , Immunity, Innate , Pseudorabies/immunology , Swine Diseases/immunology , Tumor Suppressor Protein p53/genetics , Virus Replication , Animals , Cell Line , Host-Pathogen Interactions , Pseudorabies/physiopathology , Pseudorabies/virology , Swine , Swine Diseases/physiopathology , Swine Diseases/virology , Tumor Suppressor Protein p53/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...