Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; : e0037724, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888334

ABSTRACT

Klebsiella pneumoniae is an important opportunistic pathogen that causes a variety of infections. It is critical for bacteria to maintain metal homeostasis during infection. By using an isogenic mntP deletion mutant of K. pneumoniae strain NTUH-K2044, we found that MntP was a manganese efflux pump. Manganese increased the tolerance to oxidative stress, and oxidative stress could increase the intracellular manganese concentration. In oxidative stress, the mntP deletion mutant exhibited significantly higher sensitivity to manganese. Furthermore, iron could increase the tolerance of the mntP deletion mutant to manganese. Inductively coupled plasma mass spectrometry analysis revealed that the mntP deletion mutant had higher intracellular manganese and iron concentrations than wild-type and complementary strains. These findings suggested that iron could increase manganese tolerance in K. pneumoniae. This work elucidated the role of MntP in manganese detoxification and Mn/Fe homeostasis in K. pneumoniae.IMPORTANCEMetal homeostasis plays an important role during the process of bacterial infection. Herein, we revealed that MntP was involved in intracellular manganese homeostasis. Manganese promoted resistance to oxidative stress in Klebsiella pneumoniae. Furthermore, we demonstrated that the mntP deletion mutant exhibited significantly lower survival under manganese and H2O2 conditions. Oxidative stress increased the intracellular manganese content of the mntP deletion mutant. MntP played a critical role in maintaining intracellular manganese and iron concentrations. MntP contributed to manganese detoxification and Mn/Fe homeostasis in K. pneumoniae.

2.
Hepatol Int ; 17(4): 915-926, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37012542

ABSTRACT

BACKGROUND: The evidence of transcatheter arterial chemoembolization (TACE) plus tyrosine kinase inhibitor and immune checkpoint inhibitor in unresectable hepatocellular carcinoma (HCC) was limited. This study aimed to evaluate the role of TACE plus apatinib (TACE + A) and TACE combined with apatinib plus camrelizumab (TACE + AC) in patients with unresectable HCC. METHODS: This study retrospectively reviewed patients with unresectable HCC who received TACE + A or TACE + AC in 20 centers of China from January 1, 2019 to June 31, 2021. Propensity score matching (PSM) at 1:1 was performed to reduce bias. Treatment-related adverse events (TRAEs), overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and disease control rate (DCR) were collected. RESULTS: A total of 960 eligible patients with HCC were included in the final analysis. After PSM, there were 449 patients in each group, and the baseline characteristics were balanced between two groups. At data cutoff, the median follow-up time was 16.3 (range: 11.9-21.4) months. After PSM, the TACE + AC group showed longer median OS (24.5 vs 18.0 months, p < 0.001) and PFS (10.8 vs 7.7 months, p < 0.001) than the TACE + A group; the ORR (49.9% vs 42.5%, p = 0.002) and DCR (88.4% vs 84.0%, p = 0.003) of the TACE + AC group were also higher than those in the TACE + A group. Fever, pain, hypertension and hand-foot syndrome were the more common TRAEs in two groups. CONCLUSIONS: Both TACE plus apatinib and TACE combined with apatinib plus camrelizumab were feasible in patients with unresectable HCC, with manageable safety profiles. Moreover, TACE combined with apatinib plus camrelizumab showed additional benefit.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Retrospective Studies , Antineoplastic Agents/therapeutic use , Combined Modality Therapy
3.
Vet Res ; 53(1): 97, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435858

ABSTRACT

Klebsiella pneumoniae is a leading cause of severe infections in humans and animals, and the emergence of multidrug-resistant strains highlights the need to develop effective vaccines for preventing such infections. Live attenuated vaccines are attractive vaccine candidates available in the veterinary field. We recently characterized that the K. pneumoniae kbvR (Klebsiella biofilm and virulence regulator) mutant was a highly attenuated strain in the mice model. In the present study, the characterization, safety, and protective efficacy of ΔkbvR strain as a live attenuated vaccine were evaluated. The synthesis and activity of type 1 fimbriae were increased in the ΔkbvR strain. All mice inoculated by the subcutaneous route with 105, 106, and 107 colony-forming units (CFU) doses of the ΔkbvR strain survived. Subcutaneous immunization with two doses of 105 or 107 CFU ΔkbvR elicited a robust humoral immune response, and provided protection against the following K. pneumoniae intraperitoneal infection. The antisera of mice immunized with 105 CFU dose improved the opsonophagocytic ability and complement-mediated lysis not only to the same serotype strain but also to the different serotype strain. The passive transfer of antisera from 105 CFU dose-immunized mice provided protection against K. pneumoniae infection. Overall, our results suggest the great potential of the ΔkbvR strain as a novel vaccine candidate against K. pneumoniae infections in herds or humans.


Subject(s)
Fimbriae, Bacterial , Klebsiella pneumoniae , Humans , Mice , Animals , Vaccines, Attenuated , Serogroup , Immune Sera
SELECTION OF CITATIONS
SEARCH DETAIL
...