Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 363(6422): 81-84, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30606845

ABSTRACT

Evolution generates a remarkable breadth of living forms, but many traits evolve repeatedly, by mechanisms that are still poorly understood. A classic example of repeated evolution is the loss of pelvic hindfins in stickleback fish (Gasterosteus aculeatus). Repeated pelvic loss maps to recurrent deletions of a pelvic enhancer of the Pitx1 gene. Here, we identify molecular features contributing to these recurrent deletions. Pitx1 enhancer sequences form alternative DNA structures in vitro and increase double-strand breaks and deletions in vivo. Enhancer mutability depends on DNA replication direction and is caused by TG-dinucleotide repeats. Modeling shows that elevated mutation rates can influence evolution under demographic conditions relevant for sticklebacks and humans. DNA fragility may thus help explain why the same loci are often used repeatedly during parallel adaptive evolution.


Subject(s)
DNA Breaks, Double-Stranded , DNA/chemistry , Dinucleotide Repeats , Pelvis/anatomy & histology , Sequence Deletion , Smegmamorpha/genetics , Animals , Biological Evolution , Enhancer Elements, Genetic , Fish Proteins/genetics , Nucleic Acid Conformation , Smegmamorpha/anatomy & histology , Transcription Factors/genetics
2.
Cell ; 171(2): 427-439.e21, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985565

ABSTRACT

Parrot feathers contain red, orange, and yellow polyene pigments called psittacofulvins. Budgerigars are parrots that have been extensively bred for plumage traits during the last century, but the underlying genes are unknown. Here we use genome-wide association mapping and gene-expression analysis to map the Mendelian blue locus, which abolishes yellow pigmentation in the budgerigar. We find that the blue trait maps to a single amino acid substitution (R644W) in an uncharacterized polyketide synthase (MuPKS). When we expressed MuPKS heterologously in yeast, yellow pigments accumulated. Mass spectrometry confirmed that these yellow pigments match those found in feathers. The R644W substitution abolished MuPKS activity. Furthermore, gene-expression data from feathers of different bird species suggest that parrots acquired their colors through regulatory changes that drive high expression of MuPKS in feather epithelia. Our data also help formulate biochemical models that may explain natural color variation in parrots. VIDEO ABSTRACT.


Subject(s)
Avian Proteins/genetics , Feathers/physiology , Melopsittacus/genetics , Pigments, Biological/biosynthesis , Polyenes/metabolism , Polyketide Synthases/genetics , Amino Acid Sequence , Animals , Avian Proteins/metabolism , Feathers/anatomy & histology , Feathers/chemistry , Gene Expression , Genome , Genome-Wide Association Study , Melopsittacus/anatomy & histology , Melopsittacus/physiology , Pigmentation , Polyketide Synthases/metabolism , Polymorphism, Single Nucleotide , Regeneration , Sequence Alignment
4.
Nature ; 474(7351): 399-402, 2011 May 22.
Article in English | MEDLINE | ID: mdl-21602826

ABSTRACT

The differentiation of patient-derived induced pluripotent stem cells (iPSCs) to committed fates such as neurons, muscle and liver is a powerful approach for understanding key parameters of human development and disease. Whether undifferentiated iPSCs themselves can be used to probe disease mechanisms is uncertain. Dyskeratosis congenita is characterized by defective maintenance of blood, pulmonary tissue and epidermal tissues and is caused by mutations in genes controlling telomere homeostasis. Short telomeres, a hallmark of dyskeratosis congenita, impair tissue stem cell function in mouse models, indicating that a tissue stem cell defect may underlie the pathophysiology of dyskeratosis congenita. Here we show that even in the undifferentiated state, iPSCs from dyskeratosis congenita patients harbour the precise biochemical defects characteristic of each form of the disease and that the magnitude of the telomere maintenance defect in iPSCs correlates with clinical severity. In iPSCs from patients with heterozygous mutations in TERT, the telomerase reverse transcriptase, a 50% reduction in telomerase levels blunts the natural telomere elongation that accompanies reprogramming. In contrast, mutation of dyskerin (DKC1) in X-linked dyskeratosis congenita severely impairs telomerase activity by blocking telomerase assembly and disrupts telomere elongation during reprogramming. In iPSCs from a form of dyskeratosis congenita caused by mutations in TCAB1 (also known as WRAP53), telomerase catalytic activity is unperturbed, yet the ability of telomerase to lengthen telomeres is abrogated, because telomerase mislocalizes from Cajal bodies to nucleoli within the iPSCs. Extended culture of DKC1-mutant iPSCs leads to progressive telomere shortening and eventual loss of self-renewal, indicating that a similar process occurs in tissue stem cells in dyskeratosis congenita patients. These findings in iPSCs from dyskeratosis congenita patients reveal that undifferentiated iPSCs accurately recapitulate features of a human stem cell disease and may serve as a cell-culture-based system for the development of targeted therapeutics.


Subject(s)
Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Telomere/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division , Cellular Reprogramming , Fibroblasts , Gene Expression Regulation , Humans , Molecular Chaperones , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/enzymology , Telomere/genetics , Telomere/metabolism
5.
Science ; 326(5952): 544-550, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19745116

ABSTRACT

RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y' messenger RNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a previously unknown class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.


Subject(s)
RNA Interference , RNA, Small Interfering/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces/genetics , Saccharomycetales/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Genes, Fungal , Genetic Loci , Mutation , Open Reading Frames , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Repetitive Sequences, Nucleic Acid , Retroelements , Ribonuclease III/genetics , Ribonuclease III/metabolism , Saccharomyces/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Sequence Analysis, RNA , Transcription, Genetic , Transformation, Genetic
6.
Nat Biotechnol ; 25(12): 1483-7, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18059260

ABSTRACT

Live cell imaging is a powerful method to study protein dynamics at the cell surface, but conventional imaging probes are bulky, or interfere with protein function, or dissociate from proteins after internalization. Here, we report technology for covalent, specific tagging of cellular proteins with chemical probes. Through rational design, we redirected a microbial lipoic acid ligase (LplA) to specifically attach an alkyl azide onto an engineered LplA acceptor peptide (LAP). The alkyl azide was then selectively derivatized with cyclo-octyne conjugates to various probes. We labeled LAP fusion proteins expressed in living mammalian cells with Cy3, Alexa Fluor 568 and biotin. We also combined LplA labeling with our previous biotin ligase labeling, to simultaneously image the dynamics of two different receptors, coexpressed in the same cell. Our methodology should provide general access to biochemical and imaging studies of cell surface proteins, using small fluorophores introduced via a short peptide tag.


Subject(s)
Cell Membrane/metabolism , Genes, Reporter/physiology , Kidney/metabolism , Ligases/genetics , Ligases/metabolism , Microscopy, Fluorescence/methods , Molecular Probe Techniques , Thioctic Acid/metabolism , Cell Line , Humans , Kidney/cytology , Protein Engineering/methods , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...