Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Small ; 20(15): e2304886, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009493

ABSTRACT

Phase change material (PCM) can provide a battery system with a buffer platform to respond to thermal failure problems. However, current PCMs through compositing inorganics still suffer from insufficient thermal-transport behavior and safety reliability against external force. Herein, a best-of-both-worlds method is reported to allow the PCM out of this predicament. It is conducted by combining a traditional PCM (i.e., paraffin wax/boron nitride) with a spirally weaved polyethylene fiber fabric, just like the traditional PCM is wearing functional underwear. On the one hand, the spirally continuous thermal pathways of polyethylene fibers in the fabric collaborate with the boron nitride network in the PCM, enhancing the through-plane and in-plane thermal conductivity to 10.05 and 7.92 W m-1 K, respectively. On the other, strong polyethylene fibers allow the PCM to withstand a high puncture strength of 47.13 N and tensile strength of 18.45 MPa although above the phase transition temperature. After this typical PCM packs a triple Li-ion battery system, the battery can be promised reliable safety management against both thermal and mechanical abuse. An obvious temperature drop of >10 °C is observed in the battery electrode during the cycling charging and discharging process.

2.
ACS Appl Mater Interfaces ; 14(34): 38981-38989, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35989565

ABSTRACT

Durable electricity generation from a phase-change material (PCM)-assisted solar thermoelectric generator (STEG) through photo-thermal-electric conversion is a promising way to take advantage of the clean solar energy. However, due to the deficient and mismatched thermal charging and discharging rates in the PCMs, the previous PCM-supported STEGs usually exhibit inefficient solar-thermal-electric conversion (<1%) and limited electricity output. In this work, we report a structured D-mannitol/graphene phase-change composite fabricated by a radial ice-template assembly and infiltration strategy, in which radially aligned graphene nanoplates are bridged by graphitized polyimide that offers multidirectional and interlaced thermal highways for rapid thermal charging, while the sample conformation is further regulated by the ice-template mold, promising the optimal charging and discharging balance in the PCM. After being integrated with a solar concentrator and a thermoelectric device, this powerful STEG outputs tremendous power density, with the solar-thermal-electric conversion approaching 2.40%. The plenteous electricity supply is demonstrated to reliably charge a mobile phone under normal sunlight. This elaborate STEG design opens up opportunities for providing sufficient power guarantees for the self-powering of electronic devices in the wild.

SELECTION OF CITATIONS
SEARCH DETAIL
...