Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Ren Fail ; 46(1): 2329257, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38482596

ABSTRACT

End-stage renal disease is a worldwide health burden, but the pathogenesis of uremia-associated cognitive impairment (CI) is poorly recognized. We hypothesized that uremia brings about deficiency of thiamin and folic acid and causes CI by inducing oxidative stress. Therefore, 24 Sprague-Dawley rats were randomly divided into two groups: a 5/6 nephrectomy group (n = 12) and a sham-operated group (n = 12). The Morris water maze was used to assess the cognitive function eight weeks post-surgery, and serum levels of thiamin, folic acid and homocysteine were detected subsequently. Brain and kidney tissues were collected for pathological examination and 8-Hydroxy-2'-deoxyguanosine (8-OHdG) immunochemistry staining. Results showed that the escape latency on training days 1-2 was longer, and the time in quadrant IV on experimental day 6 was significantly shorter in 5/6 nephrectomy group. Meanwhile, the uremic rats showed decreased thiamin, folic acid and increased homocysteine. We also found the time in quadrant IV was positively correlated with thiamin and folic acid level, while negatively correlated with the blood urea nitrogen and 8-OHdG positive cell proportion. Furthermore, in 5/6 nephrectomy group, the hippocampal neuron count was significantly reduced, and a greater proportion of 8-OHdG positive cells were detected. Pretreating LPS-stimulated rat microglial cells with thiamin or folic acid in vitro alleviated the inflammatory impairment in terms of cell viability and oxidative stress. In summary, we applied a uremic rat model and proved that uremia causes serum thiamin and folic acid deficiency, homocysteine elevation, along with neuron reduction and severe oxidative stress in hippocampus, finally leading to CI.


Subject(s)
Renal Insufficiency , Uremia , Rats , Animals , Folic Acid , Thiamine , Rats, Sprague-Dawley , Uremia/complications , Cognition , Homocysteine
2.
Diabetes Res Clin Pract ; 209: 111594, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38403176

ABSTRACT

BACKGROUND: The relationship between Bowman's capsule thickening and progression of diabetic kidney disease (DKD) remains uncertain. METHODS: Renal biopsy specimens from 145 DKD patients and 20 control subjects were evaluated for Bowman's capsule thickness. Immunohistochemical staining assessed col4α2, laminin ß1, and albumin expression. In a discovery cohort of 111 DKD patients with eGFR ≥ 30 ml/min/1.73 m2, thickening was classified as fibrotic or exudative. The composite endpoint included CKD stage 5, dialysis initiation, and renal disease-related death. Prognosis was analyzed using Kaplan-Meier and Cox regression analyses. Two validation cohorts were included. RESULTS: Three types of thickening were observed: fibrotic, exudative, and periglomerular fibrosis. Parietal epithelial cell matrix protein accumulation contributed to fibrotic thickening, while albumin was present in exudative thickening. Bowman's capsule was significantly thicker in DKD patients (5.74 ± 2.09 µm) compared to controls (3.38 ± 0.43 µm, P < 0.01). In discovery cohort, the group of exudative thickning had a poorer prognosis(median time 20 months vs 57 months, P = 0.000). Cox multivariate analysis revealed that exudative thickening of Bowman's capsule were associated with a poor prognosis. The validation cohorts confirmed the result. CONCLUSIONS: Various mechanisms contribute to Bowman's capsule thickening in DKD. The proportion of exudative thickening may serve as a valuable prognostic indicator for DKD patients.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Humans , Bowman Capsule/metabolism , Bowman Capsule/pathology , Diabetic Nephropathies/pathology , Kidney Failure, Chronic/pathology , Renal Dialysis , Albumins , Diabetes Mellitus/pathology
3.
Adv Sci (Weinh) ; 10(25): e2207208, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37431694

ABSTRACT

Thermal stability determines a material's ability to maintain its performance at desired service temperatures. This is especially important for aluminum (Al) alloys, which are widely used in the commercial sector. Herein, an ultra-strong and heat-resistant Al-Cu composite is fabricated with a structure of nano-AlN and submicron-Al2 O3 particles uniformly distributed in the matrix. At 350 °C, the (8.2AlN+1Al2 O3 )p /Al-0.9Cu composite achieves a high strength of 187 MPa along with a 4.6% ductility under tension. The high strength and good ductility benefit from strong pinning effect on dislocation motion and grain boundary sliding by uniform dispersion of nano-AlN particles, in conjunction with the precipitation of Guinier-Preston (GP) zones, enhancing strain hardening capacity during plastic deformation. This work can expand the selection of Al-Cu composites for potential applications at service temperatures as high as ≈350 °C.

4.
Free Radic Biol Med ; 204: 337-346, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37245531

ABSTRACT

Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. In our study we found that Adenosine triphosphate (ATP) content was significantly increased in the urine of diabetic mice. We examined the expression of all purinergic receptors in the renal cortex and found that only purinergic P2X7 receptor (P2X7R) expression was significantly increased in the renal cortex of wild-type diabetic mice and that the P2X7R protein partially co-localized with podocytes. Compared with P2X7R(-/-) non-diabetic mice, P2X7R(-/-) diabetic mice showed stable expression of the podocyte marker protein podocin in the renal cortex. The renal expression of microtubule associated protein light chain 3 (LC-3II) in wild-type diabetic mice was significantly lower than in wild-type controls, whereas the expression of LC-3II in the kidneys of P2X7R(-/-) diabetic mice was not significantly different from that of P2X7R(-/-) non-diabetic mice. In vitro, high glucose induced an increase in p-Akt/Akt, p-mTOR/mTOR and p62 protein expression along with a decrease in LC-3II levels in podocytes, whereas after transfection with P2X7R siRNA, Phosphorylated protein kinase B (p-Akt)/Akt, Phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR, and p62 expression were restored and LC-3II expression was increased. In addition, LC-3II expression was also restored after inhibition of Akt and mTOR signaling with MK2206 and rapamycin, respectively. Our results suggest that P2X7R expression is increased in podocytes in diabetes, and that P2X7R is involved in the inhibition of podocyte autophagy by high glucose, at least in part through the Akt-mTOR pathway, thereby exacerbating podocyte damage and promoting the onset of diabetic nephropathy. Targeting P2X7R may be a potential treatment for diabetic nephropathy.


Subject(s)
Diabetic Nephropathies , Podocytes , Mice , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Diabetic Nephropathies/genetics , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Glucose/metabolism , Autophagy , Mammals/metabolism
5.
J Phys Chem Lett ; 13(31): 7336-7341, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35920721

ABSTRACT

In intracellular transport, the cargo is usually simultaneously carried by two types of motor proteins that move oppositely, widely described as a "tug-of-war". We show theoretically that apart from the apparent competition, there is also a unintuitive cooperation between motors with opposite directionality. The model reproduces the in vivo experimental data with high accuracy. Under certain conditions, the cooperation can significantly increase the transport distance, rationalizing the choice of bidirectional over unidirectional transport in evolution. We further derive the exact analytical solution for the transport distance. Our results pave the road to understanding the physical nature of intracellular transport by motor proteins.


Subject(s)
Dyneins , Molecular Motor Proteins , Biological Transport , Dyneins/metabolism , Kinesins , Models, Biological , Molecular Motor Proteins/metabolism
6.
BMJ Open ; 11(12): e050605, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907051

ABSTRACT

INTRODUCTION: Cognitive impairment (CI) is the common complications in maintenance haemodialysis (MHD) patients. Recently, the pathogenesis of CI has been discussed and oxidative stress is one of the main mechanisms in these patients. Thiamine and folic acid, which play an important role in relieving the production of reactive oxygen species, reducing homocysteine levels, improving oxidative stress in the nervous system. In pilot study, cognitive function was significantly improved in the group with thiamine and folic supplementation. Based on this result, we hypothesise that thiamine combined with folic acid supplementation may improve cognitive function in patients with MHD. METHODS AND ANALYSIS: In this prospective, randomised, placebo-controlled, double-blind, multicentre study, we will enrol patients undergoing haemodialysis who has the Montreal Cognitive Assessment score lower than 26 to treatment group (thiamine 90 mg/day combined with folic acid 30 mg/day) or control group (thiamine placebo 90 mg/day combined with folic acid placebo 30 mg/day). All subjects will be followed up for 96 weeks. The primary endpoint is the comparison of Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) score between treatment group and control group at 96 weeks of follow-up. The secondary endpoints include serum thiamine, folate, homocysteine levels, cranial functional MRI and survival. The central randomisation method will be adopted and the principles of placebo-controlled, double-blind randomised control will be followed. The comparisons among ADAS-Cog scores and other secondary endpoints over time within subjects is conducted by using repeated measure analysis of variance (ANOVA) or generalised estimating equations (GEE). Pairwise t-test with Bonferroni adjustment is performed for multiple comparisons. On the other hand, for comparisons between treatment and control group, simple one-way ANOVA, GEE or Wilcoxon rank sum test is used. The χ2 method is used for statistical analysis of the categorical data. Kaplan-Meier survival curve is used for survival analysis. A p<0.05 is considered statistically significant difference. ETHICS AND DISSEMINATION: This trial has been approved by Shanghai Jiao Tong University School of Medicine, Renji Hospital Ethics Committee (KY2019-199). After publication of study results, trial report will be published in peer-reviewed journals and/or in national or international conferences. TRIAL REGISTRATION NUMBER: ChiCTR2000029297.


Subject(s)
Cognitive Dysfunction , Folic Acid , China , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Double-Blind Method , Folic Acid/therapeutic use , Humans , Multicenter Studies as Topic , Pilot Projects , Prospective Studies , Randomized Controlled Trials as Topic , Renal Dialysis , Thiamine/therapeutic use
7.
Cell Death Dis ; 12(1): 132, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504771

ABSTRACT

Extracellular adenosine triphosphate (ATP) and its receptor, P2X7 receptor (P2X7R), are playing an important role in the pathological process of renal ischemia-reperfusion injury, but their underlying mechanism remains unclear. Also, the effects of tubular epithelium-expressed P2X7 receptor on ischemia acute kidney injury is still unknown. The aim of this study is to clarify if this mechanism involves the activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in the renal tubular epithelial cells. In our research, we used male C57BL/6 wild type and P2X7R (-/-) mice, cultured human proximal tubular epithelial cells, and kidneys from acute kidney injury patients. Mice underwent for unilateral nephrectomy combined with the lateral renal pedicle clamping. Cultured cells were subjected to hypoxia/reoxygenation or ATP. Apyrase and A438079 were used to block the extracellular ATP/P2X7 receptor pathway. We also constructed radiation-induced bone marrow (BM) chimeras by using P2X7R (-/-) mice and P2X7R (+/+) wild-type mice. P2X7 receptor deficiency protected from renal ischemia-reperfusion injury and attenuated the formation of NLRP3 inflammasome. By using BM chimeras, we found a partial reduction of serum creatinine and less histological impairment in group wild-type BM to P2X7R (-/-) recipient, compared with group wild-type BM to wild-type recipient. In renal tubular epithelial cells, hypoxia/reoxygenation induced ATP release and extracellular ATP depletion reduced the expression of active IL-1ß. ATP activated the NLRP3 inflammasome in renal tubular epithelial cells, which were blunted by transient silence of P2X7 receptor, as well as by P2X7 receptor blocking with A438079. In human samples, we found that patients with Stage 3 AKI had higher levels of P2X7 receptor expression than patients with Stage 1 or Stage 2. Extracellular ATP/P2X7 receptor axis blocking may protect renal tubular epithelial cells from ischemia-reperfusion injury through the regulation of NLRP3 inflammasome.


Subject(s)
Acute Kidney Injury/metabolism , Inflammation/metabolism , Receptors, Purinergic P2X7/metabolism , Reperfusion Injury/physiopathology , Acute Kidney Injury/pathology , Animals , Female , Humans , Inflammation/pathology , Male , Mice , Signal Transduction , Survival Analysis , Transfection
8.
Sci Bull (Beijing) ; 66(11): 1091-1100, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-36654343

ABSTRACT

Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics. Sensitivity is a key parameter of flexible pressure sensors. Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity, the signal becomes nonlinear and the pressure response range gets much narrower, significantly limiting the applications of flexible pressure sensors. Here, we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode, for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range. The micropillars undergo three stages of deformation upon loading: initial contact (0-6 kPa) and structure buckling (6-12 kPa) that exhibit a low and nonlinear response, as well as a post-buckling stage that has a high signal linearity with high sensitivity (33.16 kPa-1) over a broad pressure range of 12-176 kPa. The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface. Our sensor has been applied in pulse detection, plantar pressure mapping, and grasp task of an artificial limb. This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors, which are potentially useful in intelligent robots and health monitoring.

9.
Adv Sci (Weinh) ; 7(10): 2000348, 2020 May.
Article in English | MEDLINE | ID: mdl-32440489

ABSTRACT

Human-computer interfaces, smart glasses, touch screens, and some electronic skins require highly transparent and flexible pressure-sensing elements. Flexible pressure sensors often apply a microstructured or porous active material to improve their sensitivity and response speed. However, the microstructures or small pores will result in high haze and low transparency of the device, and thus it is challenging to balance the sensitivity and transparency simultaneously in flexible pressure sensors or electronic skins. Here, for a capacitive-type sensor that consists of a porous polyvinylidene fluoride (PVDF) film sandwiched between two transparent electrodes, the challenge is addressed by filling the pores with ionic liquid that has the same refractive index with PVDF, and the transmittance of the film dramatically boosts from 0 to 94.8% in the visible range. Apart from optical matching, the ionic liquid also significantly improves the signal intensity as well as the sensitivity due to the formation of an electric double layer at the dielectric-electrode interfaces, and improves the toughness and stretchability of the active material benefiting from a plasticization effect. Such transparent and flexible sensors will be useful in smart windows, invisible bands, and so forth.

10.
Nat Commun ; 11(1): 209, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924813

ABSTRACT

Sensitivity is a crucial parameter for flexible pressure sensors and electronic skins. While introducing microstructures (e.g., micro-pyramids) can effectively improve the sensitivity, it in turn leads to a limited pressure-response range due to the poor structural compressibility. Here, we report a strategy of engineering intrafillable microstructures that can significantly boost the sensitivity while simultaneously broadening the pressure responding range. Such intrafillable microstructures feature undercuts and grooves that accommodate deformed surface microstructures, effectively enhancing the structural compressibility and the pressure-response range. The intrafillable iontronic sensor exhibits an unprecedentedly high sensitivity (Smin > 220 kPa-1) over a broad pressure regime (0.08 Pa-360 kPa), and an ultrahigh pressure resolution (18 Pa or 0.0056%) over the full pressure range, together with remarkable mechanical stability. The intrafillable structure is a general design expected to be applied to other types of sensors to achieve a broader pressure-response range and a higher sensitivity.

11.
Nephrology (Carlton) ; 25(3): 230-238, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31099942

ABSTRACT

AIM: Muscle weakness is commonly among chronic kidney disease (CKD) patients. Muscle mitochondrial dysfunction and decreased pyruvate dehydrogenase (PDH) activity occur in CKD animals but have not been confirmed in humans, and changes in pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) expression have not been evaluated in CKD muscle. We presume that the reduction of muscle mitochondria and post-translational modification of PDH may cause muscle weakness in CKD patients. Herein, we explored changes in mitochondrial morphology, PDH expression and activity, and PDK/PDP expression in CKD patient muscle. METHODS: Twenty patients with stage 4-5 CKD (CKD group) and 24 volunteers (control group) were included. Clinical characteristics, biochemical information and handgrip strength (HGS) were determined. Skeletal muscle samples were collected from eight stage 5 CKD patients from CKD group. Other eight non-CKD surgical subjects' muscle samples were collected as control. PDH activity was determined using a PDH enzyme activity assay kit, and real-time PCR and western blotting analyses were performed to measure gene expression and protein levels, respectively. Transmission electron microscopy was used to study mitochondria morphology. RESULTS: CKD patients had lower HGS than non-CKD subjects, and HGS was correlated with gender, age, haemoglobin and albumin. Mitochondria were decreased in end-stage renal disease (ESRD) patients muscle. Mfn-1 expression and phospho-Drp1(S637)/Drp1 ratio were inhibited in the ESRD group, implicating dysfunctional mitochondrial dynamics. Muscle PDH activity and phospho-PDH(S293) were decreased in ESRD patient muscle, while PDK4 protein level was up regulated. CONCLUSION: Decreased mitochondria and PDH deficiency caused by up regulation of PDK 4 contribute to muscle dysfunction, and could be responsible for muscle weakness in CKD patients.


Subject(s)
Mitochondria, Muscle/physiology , Muscle Weakness/etiology , Muscle, Skeletal/enzymology , Protein Kinases/physiology , Renal Insufficiency, Chronic/complications , Adult , Aged , Female , Hand Strength , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/physiopathology , Up-Regulation
12.
PeerJ ; 7: e8016, 2019.
Article in English | MEDLINE | ID: mdl-31799068

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is one of the principal complications of diabetes and podocyte injury plays an important role in the DN pathogenesis. Wnt/ß-catenin signaling overactivation confers podocyte injury and promotes multiple types of renal disease. However, the underlying mechanism of Wnt/ß-catenin signaling activation in DN progression has not been fully elucidated. Long noncoding RNA (lncRNA) is a large class of endogenous RNA molecules lacking functional code capacity and which participates in the pathogenesis of human disease, including DN. METHOD: A diabetes model was constructed by intraperitoneal injection of Streptozotocin in rats. The MPC5 cells were used to create the in vitro model. Western blot and Quantitative reverse-transcriptase-PCR were used to examine the expression of protein and mRNA. The migrated capacity was analyzed by Transwell migration assay. The cell viability was detected by CCK8. RESULTS: In the present study, we revealed the association of lncRNA Maternally Expressed Gene 3 (MEG3) with aberrant activation of Wnt/ß-catenin signaling and the role of MEG3/Wnt axis in podocyte injury. We found that high glucose (HG) treatment suppressed MEG3 expression in cultured podocytes, activated Wnt/ß-catenin signaling and caused podocyte injury as indicated by the downregulation of podocyte-specific markers (podocin and synaptopodin) and the upregulation of snail1 and α-smooth muscle actin. Overexpression of MEG3 attenuated HG-induced podocyte injury by reducing Wnt/ß-catenin activity, repressing cell migration, reactive oxygen species production and increasing the viability of podocytes. Furthermore, we provided evidences that restoration of Wnt/ß-catenin signaling by specific agonist impeded the protective effect of MEG3 on podocyte injury. Current results demonstrated that MEG3/Wnt axis plays an important role in fostering podocyte injury and may serve as a potential therapeutic target for the treatment of DN. CONCLUSION: lncRNA MEG3 ameliorates podocyte injury in DN via inactivating Wnt/ß-catenin signaling.

13.
Cell Death Dis ; 10(12): 915, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31801948

ABSTRACT

Podocytes are terminally differentiated cells with little proliferative capacity. The high expression levels of cell cycle inhibitory proteins, including p21, p27, and p57, play an important role in maintaining the low level of proliferation of mature podocytes. In the present study, we aimed to explore the role of yes-associated protein (YAP) signalling in adriamycin-induced podocyte re-entry into the cell cycle and dedifferentiation. Proliferating cell nuclear antigen (PCNA)-, cyclin-dependent kinase 4 (CDK4)-, and Cyclin D1-positive podocytes were found in mice with adriamycin-induced nephropathy. In vitro, adriamycin administration increased the percentage of cells in S phase and the upregulation of mesenchymal-related marker proteins. CDK4 and cyclin D1 were significantly up-regulated after incubation with adriamycin. Overexpression of YAP in podocytes promoted their entry into the cell cycle; up-regulated cyclin D1, desmin, and snail2 expression and down-regulated Wilms' tumour 1 (WT1) and nephrin production. Recombinant murine FGF-basic induced podocytes to re-enter the cell cycle, inhibited WT1 and nephrin, and increased desmin and snail2 expression. Pretreating podocytes with verteporfin, an inhibitor of YAP/ TEA domain transcription factor (TEAD), decreased the adriamycin-induced overexpression of cyclin D1 and reduced the ratio of S-phase podocytes. This result was further verified by knocking down YAP expression using RNA interference. In conclusion, adriamycin induced podocytes to re-enter the cell cycle via upregulation of CDK4 and cyclin D1 expression, which was at least partly mediated by YAP signalling. Re-entry into the cell cycle induced the over-expression of mesenchymal markers in podocytes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle , Cell Dedifferentiation , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Podocytes/metabolism , Podocytes/pathology , Animals , Cell Cycle/drug effects , Cell Dedifferentiation/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , Desmin/metabolism , Down-Regulation/drug effects , Doxorubicin , Fibroblast Growth Factor 2/pharmacology , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Male , Mice, Inbred BALB C , Podocytes/drug effects , Signal Transduction/drug effects , Snail Family Transcription Factors/metabolism , Up-Regulation/drug effects , YAP-Signaling Proteins
14.
Ann Transplant ; 24: 139-146, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30858349

ABSTRACT

BACKGROUND This study was designed to observe incidence and risk factors of low oxygenation after orthotropic liver transplantation (OLT). MATERIAL AND METHODS We retrospectively evaluated all adult patients who underwent living-donor OLT between January 1, 2017 and December 31, 2017. Postoperative low oxygenation was defined as PaO2/FiO2 <300 mmHg within 24 hours after surgery. Early acute kidney injury (AKI) after OLT was also defined when AKI was happened with 24 hours after operative. RESULTS A total of 301 patients, aged 50.35±10.29 years were enrolled. Of these patients, 100 patients (33.2%) suffered postoperative low oxygenation (PaO2/FiO2=251.80±35.84). Compared with the normal oxygenation group, body mass index (BMI) (24.48±3.53 versus 23.1±3.27 kg/m², P=0.001), preoperative hemoglobin (115.79±29.27 versus 111.52±29.80 g/L, P=0.033), preoperative MELD (22.25±6.54 versus 20.24±5.74, P=0.008), and intraoperative urinary volume (1.25 [0.76, 1.89] versus 2.04 [1.49, 3.68] mL/kg/h, P=0.003) were higher in low oxygenation group. There were more cases of earlier AKIs that occurred after OLT in low oxygenation patients than that in normal group (47% versus 23.4%, P<0.001). Logistic analysis showed that the preoperative BMI (hazard ration [HR]=1.107, [1.010, 1.212], P=0.029) and early AKI after OLT (HR=2.115, [1.161, 3.855], P=0.014) were independent risk factors for postoperative low oxygenation. CONCLUSIONS The incidence of postoperative low oxygenation after liver transplantation in adults was 33.2%. BMI and early AKI after OLT were correlated with postoperative hypoxemia.


Subject(s)
End Stage Liver Disease/surgery , Hypoxia/epidemiology , Hypoxia/etiology , Liver Transplantation/adverse effects , Female , Humans , Incidence , Male , Middle Aged , Postoperative Complications/epidemiology , Retrospective Studies , Risk Factors
15.
Blood Purif ; 47(1-3): 101-108, 2019.
Article in English | MEDLINE | ID: mdl-30253415

ABSTRACT

OBJECTIVE: To investigate the incidence and the prognosis of cognitive impairment (CI) and to find out the risk factors associated with the outcome in maintenance haemodialysis (MHD) patients. METHODS: Enrolled the patients who met the criteria as below: MHD (≥3 months) patients before July 2014, ≥18 years old and could carry on the cognitive function test (Montreal Cognitive Assessment [MoCA]). All enrolled patients were divided into 2 groups: CI group (MoCA < 26) and non-CI group (MoCA ≥26). All patients were followed up for 36 months. The incidence, demography data, medical history, haemodialysis data, laboratory examination and prognosis of CI in haemodialysis patients were prospectively compared and analyzed. Multivariate logistic regression analysis was used to investigate the risk factors of CI. Kaplan-Meier survival curve was used for survival analysis. RESULTS: In the present study, 219 patients were enrolled. The ratio of male to female was 1.46: 1. Age was 60.07 ± 12.44 and dialysis vintage was 100.79 ± 70.23 months. One hundred thirteen patients' MoCA scores were lower than 26 were divided into CI group. Education status (OR 3.428), post-dialysis diastolic pressure (OR 2.234) and spKt/V (OR 1.982) were independent risk factors for CI in MHD patients. During the follow-up period, 15 patients died (13.2%) in the CI group and 5 died (4.72%) in the non-CI group (p < 0.05). The Kaplan-Meier survival curve analysis showed that the survival rate of patients with CI was lower than that of non-CI group in MHD patients during 3 years follow-up (p = 0.046). CONCLUSION: CI is one of the most common complications in MHD patients. The mortality is high in patients who had CI. Education status, post-dialysis diastolic pressure and spKt/V are independent risk factors for CI in MHD patients.


Subject(s)
Cognitive Dysfunction/etiology , Cognitive Dysfunction/mortality , Renal Dialysis/adverse effects , Adult , Aged , Disease-Free Survival , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Risk Factors , Survival Rate , Time Factors
16.
Mol Cell Biol ; 38(1)2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29038164

ABSTRACT

Previous work showed that the activation of protein kinase A (PKA) signaling promoted mitochondrial fusion and prevented podocyte apoptosis. The cAMP response element binding protein (CREB) is the main downstream transcription factor of PKA signaling. Here we show that the PKA agonist 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate-cyclic AMP (pCPT-cAMP) prevented the production of adriamycin (ADR)-induced reactive oxygen species and apoptosis in podocytes, which were inhibited by CREB RNA interference (RNAi). The activation of PKA enhanced mitochondrial function and prevented the ADR-induced decrease of mitochondrial respiratory chain complex I subunits, NADH-ubiquinone oxidoreductase complex (ND) 1/3/4 genes, and protein expression. Inhibition of CREB expression alleviated pCPT-cAMP-induced ND3, but not the recovery of ND1/4 protein, in ADR-treated podocytes. In addition, CREB RNAi blocked the pCPT-cAMP-induced increase in ATP and the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α). The chromatin immunoprecipitation assay showed enrichment of CREB on PGC1-α and ND3 promoters, suggesting that these promoters are CREB targets. In vivo, both an endogenous cAMP activator (isoproterenol) and pCPT-cAMP decreased the albumin/creatinine ratio in mice with ADR nephropathy, reduced glomerular oxidative stress, and retained Wilm's tumor suppressor gene 1 (WT-1)-positive cells in glomeruli. We conclude that the upregulation of mitochondrial respiratory chain proteins played a partial role in the protection of PKA/CREB signaling.


Subject(s)
Apoptosis/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Electron Transport Complex I/genetics , Podocytes/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Cells, Cultured , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Doxorubicin/pharmacology , Electron Transport Complex I/metabolism , Male , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Podocytes/drug effects , RNA Interference , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Up-Regulation/drug effects
17.
Clin Exp Nephrol ; 19(6): 1000-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25725994

ABSTRACT

BACKGROUND: Our previous in vitro studies suggested that cyclin AMP (cAMP) signaling protects against podocyte injury. However, the molecular mechanisms remain unknown. The aim of the present study was to explore the role of forskolin, an agonist for adenylate cyclase, on ezrin/radixin/moesin (ERM) phosphorylation and chloride intracellular channel 5 (CLIC5) expressions in injured podocytes. METHODS: ADR nephrosis model were induced by adriamycin (ADR) injection in BalB/C mice. Parts of ADR nephrosis mice were pretreated with forskolin. Albuminuria was estimated by urine Coomassie blue stain. Nephrin, synaptopodin, CLIC5, phosphorylated ERM and podocalyxin were measured by confocal microscopy. CLIC5 and phosphorylated ERM also were studied using western blotting. RhoA and Rac1 were estimated by G-Lisa kit. RESULTS: We found that forskolin partially alleviated albuminuria and width of foot processes. Nephrin, synaptopodin, phosphorylated-ERM (p-ERM) and CLIC5 expression were decreased in ADR mice, which were improved by forskolin pretreatment. In vitro studies, pretreatment of podocytes with pCPT-cAMP(PKA-selective cAMP analogue)prevented puromycin aminonucleoside (PAN)-induced CLIC5 downregulation. 8-pCPT-2'-O-Me-cAMP (2Me-cAMP, an Epac-selective cAMP analogue) blocked PAN-induced p-ERM downregulation. PAN inhibited RhoA activation in podocytes, which could be prevented by pCPT-cAMP pretreatment. Y-27632, a Rho inhibitor, decreased CLIC5 expression in podocytes. CONCLUSION: Activation cAMP signaling might attenuate albuminuria in ADR-induced nephrosis mice. Different downstream signaling pathway might mediate cAMP protection on CLIC5 and p-ERM expression, respectively.


Subject(s)
Chloride Channels/metabolism , Cyclic AMP/pharmacology , Cytoskeletal Proteins/metabolism , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Phosphorylation/drug effects , Podocytes/metabolism , Animals , Anti-Bacterial Agents , Chloride Channels/drug effects , Colforsin/pharmacology , Cytoskeletal Proteins/drug effects , Doxorubicin , Male , Membrane Proteins/drug effects , Mice , Mice, Inbred BALB C , Microfilament Proteins/drug effects , Nephrosis/chemically induced , Nephrosis/metabolism , Nephrosis/pathology , Podocytes/drug effects , Vasodilator Agents/pharmacology , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
18.
PLoS One ; 9(3): e92003, 2014.
Article in English | MEDLINE | ID: mdl-24642777

ABSTRACT

Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP/metabolism , Mitochondria/metabolism , Nephrosis/metabolism , Podocytes/metabolism , Signal Transduction , Animals , Apoptosis , Arachidonic Acid/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Transformed , Colforsin/pharmacology , Cyclic AMP/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Doxorubicin/pharmacology , Dynamins/genetics , Dynamins/metabolism , Enzyme Activation , Enzyme Activators/pharmacology , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mice , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Dynamics/drug effects , Nephrosis/chemically induced , Nephrosis/genetics , Nephrosis/pathology , Phosphorylation , Podocytes/drug effects , Podocytes/pathology , Puromycin Aminonucleoside/pharmacology , Quinazolinones/pharmacology , WT1 Proteins/genetics , WT1 Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...