Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 359: 142308, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734246

ABSTRACT

Antimony (Sb) decontamination in water is necessary owing to the worsening pollution which seriously threatens human life safety. Designing bismuth-based photocatalysts with hydroxyls have attracted growing interest because of the broad bandgap and enhanced separation efficiency of photogenerated electron/hole pairs. Until now, the available photocatalysis information regarding bismuth-based photocatalysts with hydroxyls has remained scarce and the contemporary report has been largely limited to Bi3O(OH)(PO4)2 (BOHP). Herein, Bi3O(OH)(AsO4)2 (BOHAs), a novel ultraviolet photocatalyst, was fabricated via the co-precipitation method for the first time, and developed to simultaneous photocatalytic oxidation and adsorption of Sb(III). The rate constant of Sb(III) removal by the BOHAs was 32.4, 3.0, and 4.3 times higher than those of BiAsO4, BOHP, and TiO2, respectively, indicating that the introduction of hydroxyls could increase the removal of Sb(III). Additionally, the crucial operational parameters affecting the adsorption performance (catalyst dosage, concentration, pH, and common anions) were investigated. The BOHAs maintained 85% antimony decontamination of the initial yield after five successive cycles of photocatalysis. The Sb(III) removal involved photocatalytic oxidation of adsorbed Sb(III) and subsequent adsorption of the yielded Sb(V). With the acquired knowledge, we successfully applied the photocatalyst for antimony removal from industrial wastewater. In addition, BOHAs could also be powerful photocatalysts in the photodegradation of organic pollutants studies of which are ongoing. It reveals an effective strategy for synthesizing bismuth-based photocatalysts with hydroxyls and enhancing pollutants' decontamination.


Subject(s)
Antimony , Bismuth , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical , Antimony/chemistry , Adsorption , Bismuth/chemistry , Wastewater/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Photochemical Processes , Waste Disposal, Fluid/methods
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118750, 2020 Dec 05.
Article in English | MEDLINE | ID: mdl-32731144

ABSTRACT

Simultaneous high sensitivity detection of biomolecules is important for research in medicine, living cells and environmental samples. In this work, a water stable coordination polymer, [Cd2(bptc)(4,4'-bpy)(H2O)3]ˑH2O 1 (H4bptc = 2,3,3',4'-biphenyl tetracarboxylic acid, 4,4'-bpy = 4,4'-bipyridine), was designed and successfully synthesized as a luminescent sensor for simultaneous recognition of Ascorbic Acid (AA) and L-Tryptophan (L-Trp) based on luminescent -OFF and -ON, respectively. Importantly, the proposed sensing system showed an excellent performance with high KSV values of 4.85 × 104 M-1, 9.60 × 107 M-1 and low limit of detection (LOD) of 0.28 nM, 63 nM, respectively. In addition, the probable mechanisms are also discussed. The luminescent quenching behavior by AA can be mainly attributed to the static resonance energy transfer between complex 1 and the analytes. Whereas the enhancing effect of L-Trp comes from the intrinsic strong luminescence for L-Trp itself and photo-competitive mechanism between CP 1 sensor and L-Trp, supposedly. In addition, the repeatability of both systems were also investigated.


Subject(s)
Ascorbic Acid , Tryptophan , Limit of Detection , Luminescence , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...