Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38724194

ABSTRACT

NUT carcinoma (NC) is an aggressive cancer with no effective treatment. About 70% of NUT carcinoma is associated with chromosome translocation events that lead to the formation of a BRD4::NUTM1 fusion gene. Because the BRD4::NUTM1 gene is unequivocally cytotoxic when ectopically expressed in cell lines, questions remain on whether the fusion gene can initiate NC. Here, we report the first genetically engineered mouse model for NUT carcinoma that recapitulates the human t(15;19) chromosome translocation in mice. We demonstrated that the mouse t(2;17) syntenic chromosome translocation, forming the Brd4::Nutm1 fusion gene, could induce aggressive carcinomas in mice. The tumors present histopathological and molecular features similar to human NC, with enrichment of undifferentiated cells. Similar to the reports of human NC incidence, Brd4::Nutm1 can induce NC from a broad range of tissues with a strong phenotypical variability. The consistent induction of poorly differentiated carcinoma demonstrated a strong reprogramming activity of BRD4::NUTM1. The new mouse model provided a critical preclinical model for NC that will lead to better understanding and therapy development for NC.


Subject(s)
Nuclear Proteins , Oncogene Proteins, Fusion , Transcription Factors , Animals , Mice , Oncogene Proteins, Fusion/genetics , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Disease Models, Animal , Carcinoma/genetics , Carcinoma/metabolism , Translocation, Genetic/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Bromodomain Containing Proteins
2.
bioRxiv ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38766149

ABSTRACT

Spontaneously blinking fluorophores permit the detection and localization of individual molecules without reducing buffers or caging groups, thus simplifying single-molecule localization microscopy (SMLM). The intrinsic blinking properties of such dyes are dictated by molecular structure and modulated by environment, which can limit utility. We report a series of tuned spontaneously blinking dyes with duty cycles that span two orders of magnitude, allowing facile SMLM in cells and dense biomolecular structures.

3.
World J Clin Cases ; 12(10): 1793-1798, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38660069

ABSTRACT

BACKGROUND: Whether hyperbaric oxygen therapy (HBOT) can cause paradoxical herniation is still unclear. CASE SUMMARY: A 65-year-old patient who was comatose due to brain trauma underwent decompressive craniotomy and gradually regained consciousness after surgery. HBOT was administered 22 d after surgery due to speech impairment. Paradoxical herniation appeared on the second day after treatment, and the patient's condition worsened after receiving mannitol treatment at the rehabilitation hospital. After timely skull repair, the paradoxical herniation was resolved, and the patient regained consciousness and had a good recovery as observed at the follow-up visit. CONCLUSION: Paradoxical herniation is rare and may be caused by HBOT. However, the underlying mechanism is unknown, and the understanding of this phenomenon is insufficient. The use of mannitol may worsen this condition. Timely skull repair can treat paradoxical herniation and prevent serious complications.

4.
Neuro Oncol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456228

ABSTRACT

BACKGROUND: Hypoxia is associated with poor prognosis in many cancers including glioblastoma (GBM). Glioma stem-like cells (GSCs) often reside in hypoxic regions and serve as reservoirs for disease progression. Long non-coding RNAs (lncRNAs) have been implicated in GBM. However, the lncRNAs that modulate GSC adaptations to hypoxia are poorly understood. Identification of these lncRNAs may provide new therapeutic strategies to target GSCs under hypoxia. METHODS: lncRNAs induced by hypoxia in GSCs were identified by RNAseq. LUCAT1 expression was assessed by qPCR, RNAseq, Northern blot, single molecule FISH in GSCs, and interrogated in IvyGAP, TCGA, and CGGA databases. LUCAT1 was depleted by shRNA, CRISPR/Cas9, and CRISPR/Cas13d. RNAseq, Western blot, immunohistochemistry, co-IP, ChIP, ChIPseq, RNA immunoprecipitation, and proximity ligation assay were performed to investigate mechanisms of action of LUCAT1. GSC viability, limiting dilution assay, and tumorigenic potential in orthotopic GBM xenograft models were performed to assess the functional consequences of depleting LUCAT1. RESULTS: A new isoform of Lucat1 is induced by HIF1α and NRF2 in GSCs under hypoxia. LUCAT1 is highly expressed in hypoxic regions in GBM. Mechanistically, LUCAT1 formed a complex with HIF1α and its co-activator CBP to regulate HIF1α target gene expression and GSC adaptation to hypoxia. Depletion of LUCAT1 impaired GSC self-renewal. Silencing LUCAT1 decreased tumor growth and prolonged mouse survival in GBM xenograft models. CONCLUSIONS: A HIF1α-LUCAT1 axis forms a positive feedback loop to amplify HIF1α signaling in GSCs under hypoxia. LUCAT1 promotes GSC self-renewal and GBM tumor growth. LUCAT1 is a potential therapeutic target in GBM.

5.
Nat Commun ; 14(1): 4873, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573342

ABSTRACT

Multiplexed DNA fluorescence in situ hybridization (FISH) imaging technologies have been developed to map the folding of chromatin fibers at tens of nanometers and up to several kilobases in resolution in single cells. However, computational methods to reliably identify chromatin loops from such imaging datasets are still lacking. Here we present a Single-Nucleus Analysis Pipeline for multiplexed DNA FISH (SnapFISH), to process the multiplexed DNA FISH data and identify chromatin loops. SnapFISH can identify known chromatin loops from mouse embryonic stem cells with high sensitivity and accuracy. In addition, SnapFISH obtains comparable results of chromatin loops across datasets generated from diverse imaging technologies. SnapFISH is freely available at https://github.com/HuMingLab/SnapFISH .


Subject(s)
Chromatin , DNA , Animals , Mice , Chromatin/genetics , In Situ Hybridization, Fluorescence/methods , DNA/genetics
6.
Int J Dev Neurosci ; 83(5): 417-430, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37211717

ABSTRACT

Neural tube defects (NTDs) are severe congenital malformations that can lead to lifelong disability. Wuzi Yanzong Pill (WYP) is an herbal formula of traditional Chinese medicine (TCM) that has been shown to have a protective effect against NTDs in a rodent model induced by all-trans retinoic acid (atRA), but the mechanism remains unclear. In this study, the neuroprotective effect and mechanism of WYP on NTDs were investigated in vivo using an atRA-induced mouse model and in vitro using cell injury model induced by atRA in Chinese hamster ovary (CHO) cells and Chinese hamster dihydrofolate reductase-deficient (CHO/dhFr) cells. Our findings suggest that WYP has an excellent preventive effect on atRA-induced NTDs in mouse embryos, which may be related to the activation of the PI3K/Akt signaling pathway, improved embryonic antioxidant capacity, and anti-apoptotic effects, and this effect is not dependent on folic acid (FA). Our results demonstrated that WYP significantly reduced the incidence of NTDs induced by atRA; increased the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and content of glutathione (GSH); decreased the apoptosis of neural tube cells; up-regulated the expression of phosphatidylinositol 3 kinase (PI3K), phospho protein kinase B (p-Akt), nuclear factor erythroid-2 related factor (Nrf2), and b-cell lymphoma-2 (Bcl-2); and down-regulated the expression of bcl-2-associated X protein (Bax). Our in vitro studies suggested that the preventive effect of WYP on atRA-treated NTDs was independent of FA, which might be attributed to the herbal ingredients of WYP. The results suggest that WYP had an excellent prevention effect on atRA-induced NTDs mouse embryos, which may be independent of FA but related to the activation of the PI3K/Akt signaling pathway and improvement of embryonic antioxidant capacity and anti-apoptosis.


Subject(s)
Neural Tube Defects , Proto-Oncogene Proteins c-akt , Mice , Animals , Cricetinae , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , CHO Cells , Cricetulus , Signal Transduction , Tretinoin/pharmacology , Neural Tube Defects/chemically induced , Neural Tube Defects/prevention & control , Oxidative Stress
7.
J Ethnopharmacol ; 313: 116540, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37088238

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi Yanzong Pill (WYP) is a classic traditional Chinese medicine (TCM) formula that is used for reproductive system diseases. Previous studies showed that WYP had a preventive effect on the development of neural tube defects (NTDs) induced by all-trans retinoic acid (atRA) in mice. AIM OF THE STUDY: This study aimed to determine the optimal combination of main monomer components in WYP on preventing NTDs and to understand the underlying mechanism. MATERIALS AND METHODS: An optimal combination was made from five representative components in WYP including hyperoside, acteoside, schizandrol A, kaempferide and ellagic acid by orthogonal design method. In a mouse model of NTDs induced by intraperitoneal injection of atRA, pathological changes of neural tube tissues were observed by Hematoxylin & Eosin (HE) staining, neural tube epithelial cells apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), protein changes related to apoptosis, anti-apoptosis, and antioxidant factors were detected with Western blot. Potential targets and mechanisms of monomer compatibility group (MCG) acting on NTDs were analyzed by bioinformatics. RESULTS: Treatment with different combinations of WYP bioactive ingredients resulted in varying decreases in the incidence of NTDs in mice embryos. The combination of MCG15 (200 mg/kg of hyperoside, 100 mg/kg of acteoside, 10 mg/kg of schizandrol A, 100 mg/kg of kaempferide and 1 mg/kg of ellagic acid) showed the most significant reduction in NTD incidence. Mechanistically, MCG15 inhibited apoptosis and oxidative stress, as evidenced by reduced TUNEL-positive cells, downregulation of caspase-9, cleaved caspase-3, Bad, and Bax, and upregulation of Bcl-2, as well as decreased MDA and increased SOD, CAT, GSH, HO-1, and GPX1 levels. Bioinformatics analysis showed that MCG15 acted on the PI3K/Akt signaling pathway, which was confirmed by Western blot analysis showing increased expression of p-PI3K, p-Akt/Akt, and Nrf2 related indicators. CONCLUSION: We have identified an optimal combination of five bioactive components in WYP (MCG15) that prevented NTDs in mice embryos induced by atRA by activating the PI3K/Akt signaling pathway and inhibiting apoptosis and oxidative stress.


Subject(s)
Neural Tube Defects , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ellagic Acid/pharmacology , Neural Tube Defects/chemically induced , Neural Tube Defects/prevention & control , Neural Tube Defects/metabolism , Oxidative Stress , Tretinoin/adverse effects , Tretinoin/metabolism
8.
Nat Genet ; 54(10): 1527-1533, 2022 10.
Article in English | MEDLINE | ID: mdl-36123406

ABSTRACT

Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumor growth, drug resistance and shorter survival. Currently, the impact of nonchromosomal oncogene inheritance-random identity by descent-is poorly understood. Also unclear is the impact of ecDNA on somatic variation and selection. Here integrating theoretical models of random segregation, unbiased image analysis, CRISPR-based ecDNA tagging with live-cell imaging and CRISPR-C, we demonstrate that random ecDNA inheritance results in extensive intratumoral ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted treatment. Observed ecDNAs benefit host cell survival or growth and can change within a single cell cycle. ecDNA inheritance can predict, a priori, some of the aggressive features of ecDNA-containing cancers. These properties are facilitated by the ability of ecDNA to rapidly adapt genomes in a way that is not possible through chromosomal oncogene amplification. These results show how the nonchromosomal random inheritance pattern of ecDNA contributes to poor outcomes for patients with cancer.


Subject(s)
Neoplasms , Oncogenes , Biological Evolution , DNA , Extrachromosomal Inheritance , Humans , Neoplasms/genetics , Neoplasms/pathology
9.
Nat Genet ; 54(4): 481-491, 2022 04.
Article in English | MEDLINE | ID: mdl-35410381

ABSTRACT

Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.


Subject(s)
Nuclear Proteins , Transcription Factors , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomes/genetics , Chromosomes/metabolism , Mammals/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Domains , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Nature ; 600(7890): 731-736, 2021 12.
Article in English | MEDLINE | ID: mdl-34819668

ABSTRACT

Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.


Subject(s)
Neoplasms , Nuclear Proteins , Azepines/pharmacology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Nuclear Proteins/genetics , Oncogenes/genetics , Transcription Factors/genetics
11.
Mol Syst Biol ; 17(7): e9653, 2021 07.
Article in English | MEDLINE | ID: mdl-34232558

ABSTRACT

Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.


Subject(s)
Cell Nucleus , Genome , Cell Nucleus/genetics , Chromatin , Genome/genetics , Genomics , Microscopy
12.
JACS Au ; 1(5): 690-696, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34056637

ABSTRACT

Fluorescence microscopy relies on dyes that absorb and then emit photons. In addition to fluorescence, fluorophores can undergo photochemical processes that decrease quantum yield or result in spectral shifts and irreversible photobleaching. Chemical strategies that suppress these undesirable pathways-thereby increasing the brightness and photostability of fluorophores-are crucial for advancing the frontier of bioimaging. Here, we describe a general method to improve small-molecule fluorophores by incorporating deuterium into the alkylamino auxochromes of rhodamines and other dyes. This strategy increases fluorescence quantum yield, inhibits photochemically induced spectral shifts, and slows irreparable photobleaching, yielding next-generation labels with improved performance in cellular imaging experiments.

13.
Nat Methods ; 17(8): 815-821, 2020 08.
Article in English | MEDLINE | ID: mdl-32719532

ABSTRACT

Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted 'Janelia Fluor' (JF) dyes useful for biological imaging experiments in cells and in vivo.


Subject(s)
Fluorescent Dyes/chemistry , Rhodamines/chemistry , Cell Line, Tumor , Humans , Infrared Rays , Microscopy, Fluorescence/methods , Molecular Structure
14.
Nat Methods ; 17(4): 430-436, 2020 04.
Article in English | MEDLINE | ID: mdl-32203384

ABSTRACT

To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.


Subject(s)
DNA/metabolism , Genomics/methods , In Situ Hybridization, Fluorescence/methods , Microscopy/methods , Chromosome Painting , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Image Processing, Computer-Assisted , Sequence Analysis, DNA/methods
15.
Elife ; 72018 06 25.
Article in English | MEDLINE | ID: mdl-29939130

ABSTRACT

Maintenance of transcription programs is challenged during mitosis when chromatin becomes condensed and transcription is silenced. How do the daughter cells re-establish the original transcription program? Here, we report that the TATA-binding protein (TBP), a key component of the core transcriptional machinery, remains bound globally to active promoters in mouse embryonic stem cells during mitosis. Using live-cell single-molecule imaging, we observed that TBP mitotic binding is highly stable, with an average residence time of minutes, in stark contrast to typical TFs with residence times of seconds. To test the functional effect of mitotic TBP binding, we used a drug-inducible degron system and found that TBP promotes the association of RNA Polymerase II with mitotic chromosomes, and facilitates transcriptional reactivation following mitosis. These results suggest that the core transcriptional machinery promotes efficient transcription maintenance globally.


Subject(s)
Chromosomes/chemistry , Mitosis , Mouse Embryonic Stem Cells/metabolism , RNA Polymerase II/genetics , TATA-Box Binding Protein/genetics , Transcriptional Activation , Animals , Cell Line , Chromosomes/metabolism , Diterpenes/pharmacology , Epoxy Compounds/pharmacology , Flavonoids/pharmacology , Mice , Mitosis/drug effects , Molecular Imaging , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Phenanthrenes/pharmacology , Piperidines/pharmacology , Promoter Regions, Genetic , Protein Binding/drug effects , RNA Polymerase II/metabolism , Single-Cell Analysis , TATA-Box Binding Protein/metabolism
16.
Genes Dev ; 31(17): 1795-1808, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28982762

ABSTRACT

Transcription factor (TF)-directed enhanceosome assembly constitutes a fundamental regulatory mechanism driving spatiotemporal gene expression programs during animal development. Despite decades of study, we know little about the dynamics or order of events animating TF assembly at cis-regulatory elements in living cells and the long-range molecular "dialog" between enhancers and promoters. Here, combining genetic, genomic, and imaging approaches, we characterize a complex long-range enhancer cluster governing Krüppel-like factor 4 (Klf4) expression in naïve pluripotency. Genome editing by CRISPR/Cas9 revealed that OCT4 and SOX2 safeguard an accessible chromatin neighborhood to assist the binding of other TFs/cofactors to the enhancer. Single-molecule live-cell imaging uncovered that two naïve pluripotency TFs, STAT3 and ESRRB, interrogate chromatin in a highly dynamic manner, in which SOX2 promotes ESRRB target search and chromatin-binding dynamics through a direct protein-tethering mechanism. Together, our results support a highly dynamic yet intrinsically ordered enhanceosome assembly to maintain the finely balanced transcription program underlying naïve pluripotency.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Kruppel-Like Transcription Factors/genetics , Pluripotent Stem Cells/physiology , Animals , Binding Sites , Chromatin/metabolism , Embryonic Stem Cells , Kruppel-Like Factor 4 , Mice , Octamer Transcription Factor-3/metabolism , Protein Binding , Receptors, Estrogen/metabolism , SOXB1 Transcription Factors/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factors/metabolism
17.
Mol Cell Biol ; 37(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28373291

ABSTRACT

Developing B lymphocytes undergo clonal expansion following successful immunoglobulin heavy chain gene rearrangement. During this proliferative burst, expression of the Rag genes is transiently repressed to prevent the generation of double-stranded DNA (dsDNA) breaks in cycling large pre-B cells. The Rag genes are then reexpressed in small, resting pre-B cells for immunoglobulin light chain gene rearrangement. We previously identified c-Myb as a repressor of Rag transcription during clonal expansion using Abelson murine leukemia virus-transformed B cells. Nevertheless, the molecular mechanisms by which c-Myb achieved precise spatiotemporal repression of Rag expression remained obscure. Here, we identify two mechanisms by which c-Myb represses Rag transcription. First, c-Myb negatively regulates the expression of the Rag activator Foxo1, an activity dependent on M303 in c-Myb's transactivation domain, and likely the recruitment of corepressors to the Foxo1 locus by c-Myb. Second, c-Myb represses Rag transcription directly by occupying the Erag enhancer and antagonizing Foxo1 binding to a consensus forkhead site in this cis-regulatory element that we show is crucial for Rag expression in Abelson pre-B cell lines. This work provides important mechanistic insight into how spatiotemporal expression of the Rag genes is tightly controlled during B lymphocyte development to prevent mistimed dsDNA breaks and their deleterious consequences.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation , Homeodomain Proteins/metabolism , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites , CRISPR-Cas Systems/genetics , Cell Proliferation , Enhancer Elements, Genetic/genetics , Forkhead Box Protein O1/metabolism , Mice , Models, Biological , Mutation/genetics , Protein Binding , Transcription, Genetic
18.
Elife ; 52016 11 19.
Article in English | MEDLINE | ID: mdl-27855781

ABSTRACT

During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking.


Subject(s)
Chromosomes/chemistry , Mitosis , Mouse Embryonic Stem Cells/physiology , Transcription Factors/analysis , Animals , Cells, Cultured , Mice , Transcription, Genetic
19.
Genet Epigenet ; 8: 37-41, 2016.
Article in English | MEDLINE | ID: mdl-27512340

ABSTRACT

The rodent naive pluripotent state is believed to represent the preimplantation inner cell mass state of the developing blastocyst and can derive self-renewing pluripotent embryonic stem cells (ESCs) in vitro. Nevertheless, human ESCs exhibit epigenetic, metabolic, and transcriptomic characteristics more akin to primed pluripotent stem cells (PSCs) derived from the postimplantation epiblast. Understanding the genetic and epigenetic mechanisms that constrain human ESCs in the primed state is crucial for the human naive pluripotent state resetting and numerous applications in regenerative medicine. In this review, we begin by defining the naive and primed states in the murine model and compare the epigenetic characteristics of those states to the human PSCs. We also examine the various reprogramming schemes to derive the human naive pluripotent state. Finally, we discuss future perspectives of studying and deriving the human naive PSCs in the context of cellular engineering and regenerative medicine.

20.
Endocrine ; 53(3): 747-53, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26886901

ABSTRACT

Increasing number of patients with thyroid carcinoma, especially young female patients, prefer to choose endoscopic thyroidectomy with bilateral central neck dissection (ETBC) for perfect cosmetic effects. However, the incidence of hypoparathyroidism after ETBC has not been well studied. Ninety six patients with papillary thyroid carcinoma were enrolled. All patients, including 49 ETBC and 47 open surgery patients, underwent total thyroidectomy with bilateral central neck dissection (CND). Some patients also underwent lateral neck dissection simultaneously. The incidence of hypoparathyroidism and parathyroid hormone (PTH) level were examined. Patients in the open surgery group had more advanced lesions, with larger tumor (p = 0.000), older age (p = 0.000), and more serious local involvement. The dissection extent of the open group was significantly larger than that of the ETBC group (p = 0.006). In contrast, the ETBC group with less dissection extent showed a significantly higher incidence of transient hypoparathyroidism than the open group (59.2 vs. 29.6 %, p = 0.004). The average PTH decline of the ETBC group was significantly higher than that of the open group on postoperative day 1 (POD1) (32.1 vs. 21.6 pg/ml, p = 0.010). Furthermore, the ETBC group had a significantly higher portion of patients with a PTH <10 pg/ml on POD1 (p = 0.001). One patient in the ETBC group developed permanent hypoparathyroidism. Autotransplantation and inadvertent removal rates of parathyroid did not differ between the two groups. Although generally considered a safe method for patients with thyroid carcinoma, ETBC may increase the risk of transient hypoparathyroidism compared with conventional open surgery.


Subject(s)
Carcinoma, Papillary/surgery , Endoscopy/adverse effects , Hypoparathyroidism/etiology , Neck Dissection/adverse effects , Thyroid Neoplasms/surgery , Thyroidectomy/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Endoscopy/methods , Female , Humans , Hypoparathyroidism/blood , Male , Middle Aged , Neck Dissection/methods , Parathyroid Hormone/blood , Postoperative Complications/blood , Postoperative Complications/etiology , Postoperative Period , Risk Factors , Thyroidectomy/methods , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...