Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 36(9): 2848-2855, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31999334

ABSTRACT

MOTIVATION: With the rapid development of high-throughput technologies, parallel acquisition of large-scale drug-informatics data provides significant opportunities to improve pharmaceutical research and development. One important application is the purpose prediction of small-molecule compounds with the objective of specifying the therapeutic properties of extensive purpose-unknown compounds and repurposing the novel therapeutic properties of FDA-approved drugs. Such a problem is extremely challenging because compound attributes include heterogeneous data with various feature patterns, such as drug fingerprints, drug physicochemical properties and drug perturbation gene expressions. Moreover, there is a complex non-linear dependency among heterogeneous data. In this study, we propose a novel domain-adversarial multi-task framework for integrating shared knowledge from multiple domains. The framework first uses an adversarial strategy to learn target representations and then models non-linear dependency among several domains. RESULTS: Experiments on two real-world datasets illustrate that our approach achieves an obvious improvement over competitive baselines. The novel therapeutic properties of purpose-unknown compounds that we predicted have been widely reported or brought to clinics. Furthermore, our framework can integrate various attributes beyond the three domains examined herein and can be applied in industry for screening significant numbers of small-molecule drug candidates. AVAILABILITY AND IMPLEMENTATION: The source code and datasets are available at https://github.com/JohnnyY8/DAMT-Model. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Drug Repositioning , High-Throughput Screening Assays , Software
2.
BMC Genomics ; 19(Suppl 7): 667, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30255785

ABSTRACT

BACKGROUND: The ability to predict the interaction of drugs with target proteins is essential to research and development of drug. However, the traditional experimental paradigm is costly, and previous in silico prediction paradigms have been impeded by the wide range of data platforms and data scarcity. RESULTS: In this paper, we modeled the prediction of drug-target interactions as a binary classification task. Using transcriptome data from the L1000 database of the LINCS project, we developed a framework based on a deep-learning algorithm to predict potential drug target interactions. Once fully trained, the model achieved over 98% training accuracy. The results of our research demonstrated that our framework could discover more reliable DTIs than found by other methods. This conclusion was validated further across platforms with a high percentage of overlapping interactions. CONCLUSIONS: Our model's capacity of integrating transcriptome data from drugs and genes strongly suggests the strength of its potential for DTI prediction, thereby improving the drug discovery process.


Subject(s)
Algorithms , Drug Interactions , Gene Expression Profiling/methods , Machine Learning , Proteins/metabolism , Transcriptome , Computer Simulation , Databases, Factual , Drug Discovery , Humans , Models, Theoretical , Molecular Targeted Therapy , Proteins/genetics
3.
Sci Rep ; 7(1): 7136, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769090

ABSTRACT

Drug repositioning strategies have improved substantially in recent years. At present, two advances are poised to facilitate new strategies. First, the LINCS project can provide rich transcriptome data that reflect the responses of cells upon exposure to various drugs. Second, machine learning algorithms have been applied successfully in biomedical research. In this paper, we developed a systematic method to discover novel indications for existing drugs by approaching drug repositioning as a multi-label classification task and used a Softmax regression model to predict previously unrecognized therapeutic properties of drugs based on LINCS transcriptome data. This approach to complete the said task has not been achieved in previous studies. By performing in silico comparison, we demonstrated that the proposed Softmax method showed markedly superior performance over those of other methods. Once fully trained, the method showed a training accuracy exceeding 80% and a validation accuracy of approximately 70%. We generated a highly credible set of 98 drugs with high potential to be repositioned for novel therapeutic purposes. Our case studies included zonisamide and brinzolamide, which were originally developed to treat indications of the nervous system and sensory organs, respectively. Both drugs were repurposed to the cardiovascular category.


Subject(s)
Drug Discovery/methods , Drug Repositioning , Transcription, Genetic/drug effects , Algorithms , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Humans , Machine Learning , Reproducibility of Results , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...