Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1347821, 2024.
Article in English | MEDLINE | ID: mdl-38601935

ABSTRACT

The impact of climate warming on soil microbial communities can significantly influence the global carbon cycle. Coastal wetlands, in particular, are susceptible to changes in soil microbial community structure due to climate warming and the presence of invasive plant species. However, there is limited knowledge about how native and invasive plant wetland soil microbes differ in their response to warming. In this study, we investigated the temporal dynamics of soil microbes (prokaryotes and fungi) under experimental warming in two coastal wetlands dominated by native Phragmites australis (P. australis) and invasive Spartina alterniflora (S. alterniflora). Our research indicated that short-term warming had minimal effects on microbial abundance, diversity, and composition. However, it did accelerate the succession of soil microbial communities, with potentially greater impacts on fungi than prokaryotes. Furthermore, in the S. alterniflora wetland, experimental warming notably increased the complexity and connectivity of the microbial networks. While in the P. australis wetland, it decreased these factors. Analysis of robustness showed that experimental warming stabilized the co-occurrence network of the microbial community in the P. australis wetland, but destabilized it in the S. alterniflora wetland. Additionally, the functional prediction analysis using the Faprotax and FunGuild databases revealed that the S. alterniflora wetland had a higher proportion of saprotrophic fungi and prokaryotic OTUs involved in carbon degradation (p < 0.05). With warming treatments, there was an increasing trend in the proportion of prokaryotic OTUs involved in carbon degradation, particularly in the S. alterniflora wetland. Therefore, it is crucial to protect native P. australis wetlands from S. alterniflora invasion to mitigate carbon emissions and preserve the health of coastal wetland ecosystems under future climate warming in China.

2.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1825-1833, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694466

ABSTRACT

Coastal wetlands are highly efficient in blue carbon sequestration. The impacts of climate warming on photosynthetic rates and light response characteristics of wetland plants would change the magnitude of carbon sequestration in coastal wetlands. We constructed warming observation stations in Phragmites australis (Phragmites) wetlands located in the Yellow River Delta in Dongying with dry climate, and in Yancheng by the Yellow Sea with wet climate. By using a Li-6800 photosynthesis system, we investigated the responses of simulated warming on photosynthetic characteristics of Phragmites in both wetlands, and compared the difference between months (June and August) in Dongying wetland. The results showed the photosynthetic rates of Phragmites were higher in June than in August. Warming increased net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (gs) and intercellular carbon dioxide concentration (Ci) in the two months, but the variability of Pn to warming was lower in August. The Pn and water use efficiency (WUE) of Phragmites in the Yancheng wetland were higher than Dongying wetland, and the maximum net photosynthetic rate (Pn max), light saturation point (LSP), apparent quantum efficiency (AQY), and dark respiration rate (Rd) of the former responded more positively to warming. The values of AQY, LSP and Pn max of Phragmites in the Yancheng wetlands were increased by 16.7%, 53.6% and 30.3%, respectively, in the warming plots. Our results suggested that warming could improve the utilization efficiency of weak light, the adaptability to strong light and photosynthetic potential of Phragmites under rainy and humid conditions. This study is of importance for accurately quantifying carbon sequestration of coastal wetlands at the regional and seasonal scales in the context of climate warming.


Subject(s)
Poaceae , Wetlands , China , Biological Transport , Photosynthesis
3.
Environ Sci Pollut Res Int ; 30(7): 18843-18860, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36219297

ABSTRACT

Studies of heavy metal pollution are essential for the protection of coastal environments. In this study, positive matrix factorization (PMF) and a GeoDetector model were used to evaluate the sources of heavy metal contamination and associated ecological risks along the Yancheng Coastal Wetland. The distribution of heavy metals was shown to be greatly affected by clay content, except for Cr in shoal. Components from 6.5 to 9φ have the strongest ability to absorb heavy metals, where the effects of Cd and Zn sequestration in the wetlands were most apparent. The abilities of various wetland environments to sequester heavy metals were shown to be Spartina alterniflora wetland > woodland > Phragmites australis wetland > aquaculture pond > shoal > paddy > meadow > dry land. The sources of the heavy metals included parent soil material (59%), agriculture (15%), and industrial pollutants (26%). According to the single-factor pollution index, there was no evidence of pollution except Cr and Pb. In general, the heavy metal pollution was insignificant. The order of pollution loading index was shoal > paddy field > dry land > Spartina Alterniflora wetland > aquaculture ponds > woodland > meadow > Phragmites australis wetland. The ecological harm of heavy metal exposure was slight except for Cd and Hg, where vehicle emissions appeared to be the main cause of heavy metal pollution.


Subject(s)
Metals, Heavy , Soil Pollutants , Ecosystem , Soil , Cadmium , Soil Pollutants/analysis , Environmental Monitoring , Risk Assessment , Metals, Heavy/analysis , Poaceae , China
SELECTION OF CITATIONS
SEARCH DETAIL
...