Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675484

ABSTRACT

Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential therapeutic effects and cardiac toxicity of Z. nitidum remain uncertain. The aim of this research was to investigate the potential therapeutic properties of the four main compounds of Z. nitidum in cardiovascular diseases, their impact on the electrical activity of cardiomyocytes, and the underlying mechanism of their anti-inflammatory effects. We selected the four compounds from Z. nitidum with a high concentration and specific biological activity: nitidine chloride (NC), chelerythrine chloride (CHE), magnoflorine chloride (MAG), and hesperidin (HE). A proteomic analysis was conducted on the myocardial tissues of beagle dogs following the administration of NC to investigate the role of NC in vivo and the associated biological processes. A bioinformatic analysis was used to predict the in vivo biological processes that MAG, CHE, and HE were involved in. Molecular docking was used to simulate the binding between compounds and their targets. The effect of the compounds on ion channels in cardiomyocytes was evaluated through a patch clamp experiment. Organ-on-a-chip (OOC) technology was developed to mimic the physiological conditions of the heart in vivo. Proteomic and bioinformatic analyses demonstrated that the four compounds of Z. nitidum are extensively involved in various cardiovascular-related biological pathways. The findings from the patch clamp experiments indicate that NC, CHE, MAG, and HE elicit a distinct activation or inhibition of the IK1 and ICa-L in cardiomyocytes. Finally, the anti-inflammatory effects of the compounds on cardiomyocytes were verified using OOC technology. NC, CHE, MAG, and HE demonstrate anti-inflammatory effects through their specific interactions with prostaglandin-endoperoxide synthase 2 (PTGS2) and significantly influence ion channels in cardiomyocytes. Our study provides a foundation for utilizing NC, CHE, MAG, and HE in the treatment of cardiovascular diseases.

2.
Anal Chim Acta ; 1287: 342067, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182374

ABSTRACT

BACKGROUND: The quality of traditional Chinese medicines (TCMs) directly impacts their clinical efficacy and drug safety, making standardization a critical component of modern TCMs. Surface-enhanced Raman spectroscopy (SERS) is an effective physical detection method with speed, sensitivity, and suitability for large sample analyses. In this study, a SERS analysis method was developed using a nano-silver sol as the matrix to address the interference of fluorescence components in TCMs and overcome the limitations of traditional detection methods. RESULTS: The higher sensitivity and efficiency of SERS was used, enabling detection of a single sample within 30 s. Coptis chinensis Franch. (CCF) was chosen as the model medicine, the nano-silver sol was used as the matrix, and CCF's fourteen main fluorescent alkaloids were tested as index components. Typical signal peaks of the main components in CCF corresponded to the bending deformation of the nitrogen-containing ring plane outer ring system, methoxy stretching vibration, and isoquinoline ring deformation vibration. Through SERS detection of different parts, the distribution content of the main active components in the cortex of CCF was found to be lower than that in the xylem and phloem. Additionally, rapid quality control analyses indicated that among the nine batches of original medicinal materials purchased from Emei and Guangxi, the main active ingredient showed a higher content. SIGNIFICANCE: A SERS-based method for the rapid localization and analysis of multiple components of TCMs was established. The findings highlight the potential of SERS as a valuable tool for the analysis and quality control of TCMs, especially for fluorescent components.


Subject(s)
Alkaloids , Heart Failure , Spectrum Analysis, Raman , Coptis chinensis , China , Isoquinolines , Coloring Agents
3.
J Ethnopharmacol ; 311: 116392, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37028611

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch. (CCF), as an extensively used traditional Chinese medicine, has therapeutic effects on Alzheimer's disease (AD), but its mechanism of action has not yet been elucidated. AIM OF THE STUDY: This study aims to reveal the mechanism of action of CCF via the gut-brain axis, and provide a new strategy for the clinical treatment of AD. MATERIALS AND METHODS: APPswe/PS1ΔE9 mice were used as AD models, and were given CCF extract by intragastric administration. Barnes maze was used to test the therapeutic effect of CCF on the treatment of AD. To reveal the mechanism of action of CCF in the treatment of AD, Vanquish Flex UHPLC-orbitrap fusion lumos mass was chosen to detect endogenous differential metabolite; MetaboAnalyst 5.0 was applied to derive relevant metabolic pathways; similarly, to explore the effects of CCF on the gut-brain axis, Vanquish Flex UPLC-Orbitrap fusion lumos mass was utilized to detect the changes in the content of SCFAs in AD mice after CCF administration; the prototype components and metabolites in CCF were identified by UPLC/ESI/qTOF-MS, then their effects on Bifidobacterium breve were explored. RESULTS: CCF shortened the latency time of AD mice, improved the target quadrant ratio of AD mice, and made the maze roadmap simpler of AD mice; CCF regulated fifteen potential metabolites of AD mice, interestingly, ILA (indole-3-lactic acid) in SCFAs (short-chain fatty acids) was also included; CCF acted on histidine and phenylalanine metabolic pathways of AD mice; CCF increased the contents of acetic acid and ILA in AD mice; magnoflorine, jatrorrhizine, coptisine, groenlandicine, thalifendine, palmatine, berberine, epiberberine, hydroxylated jatrorrhizine, and 3-methoxydemethyleneberberine in CCF were detected in fecal samples of AD mice; magnoflorine, palmatrubine, 13-methylberberine, berberine, coptisine, and palmatine promoted the growth of Bifidobacterium breve. CONCLUSIONS: we have demonstrated that CCF acts on the gut-brain axis by regulating SCFAs to treat AD.


Subject(s)
Alzheimer Disease , Berberine , Coptis , Drugs, Chinese Herbal , Mice , Animals , Coptis chinensis , Alzheimer Disease/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
4.
Acta Pharmacol Sin ; 44(3): 561-572, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35986213

ABSTRACT

Nitidine chloride (NC) is a standard active component from the traditional Chinese medicine Zanthoxylum nitidum (Roxb.) DC. (ZN). NC has shown a variety of pharmacological activities including anti-tumor activity. As a number of anti-tumor drugs cause cardiotoxicity, herein we investigated whether NC exerted a cardiotoxic effect and the underlying mechanism. Aqueous extract of ZN (ZNE) was intraperitoneally injected into rats, while NC was injected into beagles and mice once daily for 4 weeks. Cardiac function was assessed using echocardiography. We showed that both ZNE administered in rats and NC administered in mice induced dose-dependent cardiac hypertrophy and dysfunction, whereas administration of NC at the middle and high dose caused death in Beagles. Consistently, we observed a reduction of cardiac autophagy levels in NC-treated mice and neonatal mouse cardiomyocytes. Furthermore, we demonstrated that autophagy-related 4B cysteine peptidase (ATG4B) may be a potential target of NC, since overexpression of ATG4B reversed the cardiac hypertrophy and reduced autophagy levels observed in NC-treated mice. We conclude that NC induces cardiac hypertrophy via ATG4B-mediated downregulation of autophagy in mice. Thus, this study provides guidance for the safe clinical application of ZN and the use of NC as an anti-tumor drug.


Subject(s)
Cardiomegaly , Cysteine Endopeptidases , Animals , Dogs , Mice , Rats , Autophagy , Benzophenanthridines/pharmacology , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Peptide Hydrolases/drug effects , Cysteine Endopeptidases/drug effects
5.
Front Pharmacol ; 13: 828449, 2022.
Article in English | MEDLINE | ID: mdl-35370646

ABSTRACT

Astragalus mongholicus Bunge (Fabaceae) is an ancient Chinese herbal medicine, and Astragalus saponins are the main active components, which have a wide range of biological activities, such as immunomodulation, antioxidation, and neuroprotection. In this study, silver nanoparticles obtained by sodium borohydride reduction were used as the enhanced substrate to detect astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV (4), isoastragaloside I (5), and isoastragaloside II (6) in the phloem, xylem, and cork by surface-enhanced Raman spectroscopy (SERS). In the SERS spectrum of Astragalus slices, the characteristic peaks were observed at 562, 671, 732, 801, 836, 950, 1,026, 1,391, and 1,584 cm-1, among which 950 cm-1 and 1,391 cm-1 were strong SERS signals. Subsequently, the metabolites of the six kinds of Astragalus saponins were identified by UPLC/ESI/Q-TOF-MS. Totally, 80, 89, and 90 metabolites were identified in rat plasma, urine, and feces, respectively. The metabolism of saponins mainly involves dehydration, deacetylation, dihydroxylation, dexylose reaction, deglycosylation, methylation, deacetylation, and glycol dehydration. Ten metabolites (1-M2, 1-M11, 2-M3, 2-M12, 3-M14, 4-M9, 5-M2, 5-M17, 6-M3, and 6-M12) were identified by comparison with reference standards. Interestingly, Astragalus saponins 1, 2, 5, and 6 were deacetylated to form astragaloside IV (4), which has been reported to have good pharmacological neuroprotective, liver protective, anticancer, and antidiabetic effects. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectroscopy. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectrum, and the metabolites were characterized by UPLC/ESI/Q-TOF-MS, which not only provided a new method for the identification of traditional Chinese medicine but also provided a theoretical basis for the study of the pharmacodynamic substance basis of Astragalus mongholicus saponins.

6.
Front Pharmacol ; 12: 655008, 2021.
Article in English | MEDLINE | ID: mdl-34335243

ABSTRACT

Eggplant (Solanum melongena L.) Calyx is a medicinal and edible traditional Chinese medicine with anti-inflammatory, anti-oxidant, and anti-cancer properties. However, the pharmacodynamic components and metabolic characteristics remain unclear. Amide and phenylpropanoid were the two main constituents, and four amides, including n-trans-p-coumaroyltyramine (1), n-trans-p-coumaroyloctopamine (2), n-trans-p-coumaroylnoradrenline (3), n-trans-feruloyloctopamine (4), and a phenylpropanoid neochlorogenic acid (5) were selected. In this study, these five representative compounds showed cytotoxic activities on A549, HCT116, and MCF7 cells. In addition, the metabolites of 1-5 from the eggplant calyx in rats were identified. In total, 23, 37, 29, and 17 metabolites were separately characterized in rat plasma, urine, feces, and livers, by UPLC/ESI/qTOF-MS analysis. The metabolism of amides and phenylpropanoid was mainly involved in hydroxylation, methylation, glucuronidation, or sulfation reactions. Two hydroxylated metabolites (1-M2 and 2-M3) were clearly identified by comparison with reference standards. Rat liver microsome incubation experiments indicated that P450 enzymes could hydroxylate 1-5, and the methylation reaction of the 7-hydroxyl was also observed. This is the first study on the in vivo metabolism of these compounds, which lays a foundation for follow-up studies on pharmacodynamic evaluations and mechanisms.

7.
Theor Biol Forum ; 114(1-2): 15-28, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-35502728

ABSTRACT

Longitudinal functional data are increasingly common in the health domain. The motivated dataset for this paper comprises H-NMR spectra of kidney transplant patients [8]. Our aim is to cluster patients into different clinical outcome subgoups to reveal the success of the transplantation. The NMR spectra of each patient at each time point are functional data and the data are longitudinally collected at up to nine different time points. Existing methods are available for functional data collected at one time point, but not for longitudinal functional data collected at a grid of time points subject to missingness. We therefore first apply a method to extract the same number of functional feactures for each subject. Next we propose a novel nonparametric clustering method for mulitivariate functional data. We applied our proposed clustering method to the kidney transplant dataset both to a subset of the raw data with only two time points and the extacted functional features. It appeared that the proposed method achieves better clustering performance on the extracted functional features than on the subset of raw data. A data simulation study was performed to further evaluate the method. The design mimiced the kidney transplant dataset but with a larger sample size. Scenarios which have different levels of noise were considered. The simulation study showed the accuarcy of our proposed method.


Subject(s)
Kidney Transplantation , Cluster Analysis , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...