Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34356065

ABSTRACT

BACKGROUND: Thousands of genetic variants have been associated with hematological traits, though target genes remain unknown at most loci. Moreover, limited analyses have been conducted in African ancestry and Hispanic/Latino populations; hematological trait associated variants more common in these populations have likely been missed. METHODS: To derive gene expression prediction models, we used ancestry-stratified datasets from the Multi-Ethnic Study of Atherosclerosis (MESA, including n = 229 African American and n = 381 Hispanic/Latino participants, monocytes) and the Depression Genes and Networks study (DGN, n = 922 European ancestry participants, whole blood). We then performed a transcriptome-wide association study (TWAS) for platelet count, hemoglobin, hematocrit, and white blood cell count in African (n = 27,955) and Hispanic/Latino (n = 28,324) ancestry participants. RESULTS: Our results revealed 24 suggestive signals (p < 1 × 10-4) that were conditionally distinct from known GWAS identified variants and successfully replicated these signals in European ancestry subjects from UK Biobank. We found modestly improved correlation of predicted and measured gene expression in an independent African American cohort (the Genetic Epidemiology Network of Arteriopathy (GENOA) study (n = 802), lymphoblastoid cell lines) using the larger DGN reference panel; however, some genes were well predicted using MESA but not DGN. CONCLUSIONS: These analyses demonstrate the importance of performing TWAS and other genetic analyses across diverse populations and of balancing sample size and ancestry background matching when selecting a TWAS reference panel.


Subject(s)
Black or African American/genetics , Blood Cells/pathology , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcriptome , Blood Cells/metabolism , Cohort Studies , Genome-Wide Association Study , Humans , Phenotype , White People/genetics
2.
Sci Rep ; 11(1): 9953, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976285

ABSTRACT

This study evaluated the water resource utilization efficiency and resource consumption for planting, forestry, animal husbandry, and fishery in various regions of China. Using the super-efficiency Slacks-Based Measure (SBM) analysis method, the main agricultural pollution emissions (Chemical Oxygen Demand, ammonia nitrogen, and agricultural carbon emissions) were proposed as environmental constraints for the first time. The threshold regression model was used to measure the impact of agricultural water use efficiency on agricultural water consumption by constructing seven different explanatory variables. The results show that the overall utilization efficiency of agricultural water resources in China presents a fluctuating downward trend, and the regional differences are significant. A single threshold effect on agricultural water consumption was found in five variables: per capita water resources, disposable income, dependence on foreign trade, industrial structure, and Gross Domestic Product. The increase in each parameter will have a positive effect on agricultural water consumption. The relationship between agricultural water use efficiency and agricultural water use was non-linear when the government's attention and the rural labor force were used as threshold variables.

3.
Genome Biol Evol ; 8(11): 3529-3544, 2016 12 31.
Article in English | MEDLINE | ID: mdl-27797952

ABSTRACT

Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA-mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs/genetics , Oryza/genetics , RNA, Messenger/genetics , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Oryza/growth & development , RNA, Messenger/metabolism , Seedlings/metabolism , Seeds/metabolism
4.
Sci Rep ; 6: 27551, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27278626

ABSTRACT

MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments.


Subject(s)
RNA, Small Interfering/genetics , Rhizophoraceae/genetics , Transcriptome , Arabidopsis , Biological Evolution , Cluster Analysis , Computational Biology , Expressed Sequence Tags , Gene Expression Regulation, Plant , Gene Library , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , RNA, Plant/genetics , Sequence Analysis, RNA , Stress, Physiological , Temperature
5.
Plant Cell Rep ; 35(4): 933-45, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26792284

ABSTRACT

KEY MESSAGE: Anti-microRNA oligonucleotides (AMOs) are efficient and sequence-specific inhibitors of plant miRNA function both in vitro and in vivo. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in developmental and physiological processes in plants and animals. Although miRNA knockdown by chemically modified antisense oligonucleotides prevails in animal and therapeutic studies, no such application has ever been reported in plants. Here, we show that sucrose-mediated delivery of 2'-O-methyl (2'-O-Me) anti-miRNA oligonucleotides (AMOs) is an efficient and sequence-specific way of inhibiting plant miRNA activity both in vitro and in vivo. Administration of AMOs to rice protoplasts and intact leaves resulted in efficient inhibition of miRNAs with concurrent de-repression of their target genes. AMOs caused simultaneous inhibition of miRNAs from the same family but exerted negligible effects on miRNAs from different families. In rice seedlings, a single-dose AMO treatment conferred long-lasting miRNA inhibition for at least 7 days. Although simultaneous dysregulation of multiple miRNAs by an AMO-and-miRNA-mimic mixture resulted in severe root defects, the phenotypic effects of individual AMOs and miRNA mimics were negligible, suggesting that those miRNAs function together in regulatory networks to ensure homeostasis. Our results validate the utility of AMOs as an efficient tool for plant miRNA loss-of-function studies in vivo, and this approach may prove to be a highly promising general method for unraveling miRNA-mediated gene-regulatory networks.


Subject(s)
MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Oligonucleotides/pharmacology , Oryza/genetics , Gene Silencing/drug effects , Oryza/drug effects , Phenotype , Plant Cells/drug effects , Plant Cells/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Protoplasts/drug effects , Protoplasts/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...