Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Drug Anal ; 32(1): 65-78, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38526591

ABSTRACT

Aristolochic acid nephropathy (AAN) has drawn increasing public attention. Organic anion transporters (OATs) are considered to be responsible for mediating nephrotoxicity of aristolochic acids (AAs), as AAs are typical OAT1 substrates that exhibit anionic properties and contain one hydrophobic domain. Inspired by the OAT1 three-dimensional structure or substrate/protein interactions involved in transport, we designed a magnetic polymeric hybrid, mimicking the effect of basic and aromatic residues of OAT1, for efficient enriching aristolochic acid I (AA I) and aristolochic acid II (AA II) in Traditional Chinese patent medicines (TCPM). N, N-dimethylaminopropyl acrylamide (DMAPAm) was used as a cationic monomer and copolymerized with divinylbenzene (DVB) onto the surface of monodisperse magnetic nanoparticles (denoted as MNs@SiO2T-DvbDam). The magnetic polymer hybrid demonstrated high selectivity and capacity for AAs, which was mainly attributed to (1) electrostatic interactions from the cationic or basic moiety of DMAPAm and (2) the hydrophobic and π-π stacking interactions from the aromatic ring of DVB. Additionally, the surface of the hybrid exhibited amphiphilic property according to the ionization of DMAPAm, thus improving the compatibility of the adsorbent with the aqueous sample matrix. This strategy was proven to be robust in the analysis of real drug samples, which was characterized by a good linearity, high recovery and satisfactory reusability. This work confirmed that the proposed tool could be a promising candidate for enhancing the extraction selectivity of AAs in Traditional Chinese medicines (TCM).


Subject(s)
Aristolochic Acids , Nanocomposites , Acrylamide , Polymers , Magnetic Phenomena
2.
J Insect Sci ; 20(3)2020 May 01.
Article in English | MEDLINE | ID: mdl-32458992

ABSTRACT

Aggressive behavior is widely observed in animal species for acquiring important resources and usually includes both dangerous and nondangerous fighting patterns. Only a few species show dangerous fighting patterns that are defined by fights ending with contestants being severely injured or killed. Prior experience, an important factor in many species, has been demonstrated to affect a contestant's subsequent fighting behavior. Few studies have focused on the effect of experience on aggression involving dangerous fighting patterns. Here, an egg parasitoid wasp, Anastatus disparis, which shows extreme and dangerous fighting behavior to acquire mating opportunities, was used as an experimental model. Our results showed that the fighting intensity of the winning males significantly decreased subsequent fighting behavior, which was inconsistent with general predictions. Transcriptomic analyses showed that many genes related to energy metabolism were downregulated in winners, and winners increased their fighting intensity after dietary supplementation. Our study suggested that fighting in A. disparis is a tremendous drain on energy. Thus, although males won at combat, significant reductions in available energy constrained the intensity of subsequent fights and influenced strategic decisions. In addition, winners might improve their fighting skills and abilities from previous contests, and their fighting intensity after dietary supplementation was significantly higher than that of males without any fighting experience. Generally, in A. disparis, although winners increased their fighting ability with previous experience, the available energy in winners was likely to be a crucial factor affecting the intensity and strategic decisions in subsequent fights.


Subject(s)
Sexual Behavior, Animal , Wasps/physiology , Aggression , Animals , Behavior, Animal , Life Change Events , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...