Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 12(27): 10075-10088, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38994545

ABSTRACT

Calcium carbonate (CaCO3) precipitation plays a significant role during the carbon capture process; however, the mechanism is still only partially understood. Understanding the atomic-level carbonation mechanism of cementitious materials can promote the mineralization capture, immobilization, and utilization of carbon dioxide, as well as the improvement of carbonated cementitious materials' performance. Therefore, based on molecular dynamics simulations, this paper investigates the effect of Si/Al concentrations in cementitious materials on carbonation kinetics. We first verify the force field used in this paper. Then, we analyze the network connectivity evolution, the number and size of the carbonate cluster during gelation, the polymerization rate, and the activation energy. Finally, in order to reveal the reasons that caused the evolution of polymerization rate and activation energy, we analyze the local stress and charge of atoms. Results show that the Ca-Oc bond number and carbonate cluster size increase with the decrease of the Si/Al concentration and the increase of temperature, leading to the higher amorphous calcium carbonate gel polymerization degree. The local stress of each atom in the system is the driving force of the gelation transition. The presence of Si and Al components increases the atom's local stress and average charge, thus causing the increase of the energy barrier of CaCO3 polymerization and the activation energy of carbonation.

2.
Opt Express ; 32(10): 17535-17550, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858935

ABSTRACT

Physical processes in the Fourier domain play a crucial role in various applications such as spectroscopy, quantum technology, ranging, radio-astronomy, and telecommunications. However, the presence of stochastic noise poses a significant challenge in the detection of broadband spectral waveforms, especially those with limited power. In this study, we propose and experimentally demonstrate a cross-phase modulation (XPM) based spectral Talbot amplifier to recover the broadband spectral waveforms in high fidelity. Through the combination of spectral phase filtering and XPM nonlinear effect in an all-fiber configuration, we demonstrate spectral purification of THz-bandwidth spectral waveforms submerged in strong noise. The proposed spectral Talbot amplifier provides tunable amplification factors from 3 to 10, achieved by flexible control on the temporal waveform of the pump and the net dispersion. We demonstrate up to 10-dB remarkable improvement on optical signal-to-noise ratio (OSNR) while preserving the spectral envelope. Furthermore, our system allows frequency-selective reconstruction of noisy input spectra, introducing a new level of flexibility for spectral recovery and information extraction. We also evaluate numerically the impact of pump intensity deviation on the reconstructed spectral waveforms. Our all-optical approach presents a powerful means for effective recovery of broadband spectral waveforms, enabling information extraction from a noise-buried background.

3.
Opt Lett ; 48(7): 1846-1849, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221781

ABSTRACT

In this Letter, we report a bridge-connected three-electrode germanium-on-silicon (Ge-on-Si) avalanche photodiode (APD) array compatible with the complementary metal-oxide semiconductor (CMOS) process. In addition to the two electrodes on the Si substrate, a third electrode is designed for Ge. A single three-electrode APD was tested and analyzed. By applying a positive voltage on the Ge electrode, the dark current of the device can be reduced, and yet the response of the device can be increased. Under a dark current of 100 nA, as the voltage on Ge increases from 0 V to 15 V, the light responsivity is increased from 0.6 A/W to 1.17 A/W. We report, for the first time to the best of our knowledge, the near-infrared imaging properties of an array of three-electrode Ge-on-Si APDs. Experiments show that the device can be used for LiDAR imaging and low-light detection.

4.
Light Sci Appl ; 12(1): 92, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37055386

ABSTRACT

Bessel beam featured with self-healing is essential to the optical sensing applications in the obstacle scattering environment. Integrated on-chip generation of the Bessel beam outperforms the conventional structure by small size, robustness, and alignment-free scheme. However, the maximum propagation distance (Zmax) provided by the existing approaches cannot support long-range sensing, and thus, it restricts its potential applications. In this work, we propose an integrated silicon photonic chip with unique structures featured with concentrically distributed grating arrays to generate the Bessel-Gaussian beam with a long propagation distance. The spot with the Bessel function profile is measured at 10.24 m without optical lenses, and the photonic chip's operation wavelength can be continuously performed from 1500 to 1630 nm. To demonstrate the functionality of the generated Bessel-Gaussian beam, we also experimentally measure the rotation speeds of a spinning object via the rotational Doppler Effect and the distance through the phase laser ranging principle. The maximum error of the rotation speed in this experiment is measured to be 0.05%, indicating the minimum error in the current reports. By the compact size, low cost, and mass production potential of the integrated process, our approach is promising to readily enable the Bessel-Gaussian beam in widespread optical communication and micro-manipulation applications.

5.
Opt Express ; 30(4): 5008-5018, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209472

ABSTRACT

Silicon based optoelectronic integrated optical phased array is attractive owing to large-dense integration, large scanning range and CMOS compatibility. In this paper, we design and fabricate a SiN-on-SOI two-dimensional optical phased array chip. We demonstrate a two-dimensional scanning range of 96°×14.4° and 690 mW peak power of the main lobe. Additionally, we set up the time of flight (ToF) and frequency-modulated continuous-wave (FMCW) ranging systems by using this optical phased array chip, and achieve the objects detection at the range of 20 m in the ToF system and 109 m in the FMCW system, respectively.

6.
Opt Lett ; 46(3): 661-664, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33528434

ABSTRACT

We demonstrate carrier-to-signal power ratio (CSPR) enhancement by self-seeded stimulated Brillouin scattering to improve the performance of Kramers-Kronig (KK) detection for multichannel single-sideband (SSB) signals. By virtue of low-CSPR transmission and high-CSPR detection, our proposed scheme effectively advances system performance by reducing propagation-induced distortion while maintaining the minimum phase condition. We experimentally demonstrate the improvement in CSPR and bit error rate of 5×10-Gbaud 16-QAM SSB signals by applying the carrier recovery block after 80-km transmission. Under optimum pump power, the average Q factor improvement of all five channels is 3.0 dB. We also analyze the performances of different channels and the major limiting factor. The results verify that our scheme offers a promising solution to enhance SSB self-coherent KK detection in wavelength-division multiplexing systems.

7.
Opt Lett ; 42(10): 1939-1942, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28504764

ABSTRACT

We have demonstrated a new approach to enhance the uniformity of conversion efficiency in serial-to-parallel data conversion via time lens processing. In our approach, Raman amplification is applied to enhance four-wave mixing in a highly nonlinear fiber. By carefully selecting the pump wavelength, the Raman gain profile can be exploited to compensate the roll-off in conversion efficiency resulted from the varying phase mismatch between the linearly chirped pump and the signal. With Raman amplification, improvement of sensitivity up to 6.8 dB has been experimentally obtained. The variation of sensitivity across the output channels has been reduced from 8.4 to 2.0 dB.

SELECTION OF CITATIONS
SEARCH DETAIL
...