Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1730: 465087, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38889586

ABSTRACT

MicroRNAs (miRNAs) are increasingly recognized as potential biomarkers for the early diagnosis of cancer. However, the concurrent detection of multiple miRNAs in biological samples presents a significant challenge due to their high homogeneity and low abundance. This study introduced a novel approach combining strand displacement amplification (SDA) with microchip electrophoresis (MCE) for the simultaneous quantitation of trace levels of three miRNAs associated with cancer: miRNA-21, miRNA-145, and miRNA-221. Specifically designed probes were utilized to selectively capture the target miRNAs, thereby initiating the SDA process in a single solution without cross-interference. Under optimized conditions, the SDA-MCE method achieved the limit of detection (LOD) as low as 0.02 fM (S/N = 3) and the limit of quantitation (LOQ) as low as 0.1 fM across a broad linear range spanning from 0.1 fM to 1 pM. The SDA reaction was completed in approximately 1.5 h, and all target products were separated within 135 s through MCE. Application of this method for the simultaneous detection of these three miRNAs in human lung cancer cell samples yielded satisfactory results. Featuring high sensitivity, rapid analysis, minimal reagent consumption, and straightforward operation, the proposed MCE-SDA strategy holds considerable promise for multi-miRNAs detection applications.

2.
J Alzheimers Dis ; 99(2): 667-678, 2024.
Article in English | MEDLINE | ID: mdl-38701143

ABSTRACT

Background: With the increasing popularity of the internet, a growing number of patients and their companions are actively seeking health-related information online. Objective: The aim of this study was to assess the quality and readability of online information about Alzheimer's disease (AD) in China. Methods: A total of 263 qualified AD-related web pages from different businesses, governments, and hospitals were obtained. The quality of the web pages was assessed using the DISCERN tool, and the readability of the web pages was assessed using a readability measurement website suitable for the Chinese language. The differences in readability and quality between different types of web pages were investigated, and the correlation between quality and readability was analyzed. Results: The mean overall DISCERN score was 40.93±7.5. The government group scored significantly higher than the commercial and hospital groups. The mean readability score was 12.74±1.27, and the commercial group had the lowest readability score. There was a positive correlation between DISCERN scores and readability scores. Conclusions: This study presents an evaluation of the quality and readability of health information pertaining to AD in China. The findings indicate that there is a need to enhance the quality and readability of web pages about AD in China. Recommendations for improvement are proposed in light of these findings.


Subject(s)
Alzheimer Disease , Comprehension , Internet , Humans , China , Consumer Health Information/standards , Health Literacy
3.
Nat Commun ; 15(1): 3884, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719909

ABSTRACT

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Subject(s)
B7-1 Antigen , B7-H1 Antigen , Extracellular Vesicles , Programmed Cell Death 1 Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Mice , Cell Line, Tumor , Female , Neoplasms/immunology , Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Tolerance , Mice, Inbred C57BL , Male , Tumor Microenvironment/immunology
4.
Adv Sci (Weinh) ; 11(20): e2308131, 2024 May.
Article in English | MEDLINE | ID: mdl-38498770

ABSTRACT

To evade immune surveillance, tumor cells express ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) on the surface of their membrane, which degrades extracellular cyclic GMP-AMP (cGAMP), thereby inhibiting the cyclic GMP-AMP synthase (cGAS) stimulator of interferon gene (STING) DNA-sensing pathway. To fully understand this tumor stealth mechanism, it is essential to determine whether other forms of ENPP1 with hydrolytic cGAMP activity also are present in the tumor microenvironment to regulate this innate immune pathway. Herein, it is reported that various tumor-derived exosomes carry ENPP1, and can hydrolyze synthetic 2'3'-cGAMP and endogenous 2'3'-cGAMP produced by cells to inhibit cGAS-STING pathway in immune cells. Moreover, tumor exosomal ENPP1 also can hydrolyze 2'3'-cGAMP bound to LL-37 (an effective transporter of 2'3'-cGAMP) to inhibit STING signaling. Furthermore, high expression of ENPP1 in exosomes is observed isolated from human breast and lung cancer tissue, and tumor exosomal ENPP1 inhibited the immune infiltration of CD8+ T cells and CD4+ T cells. The results elucidate the essential function of tumor exosomal ENPP1 in the cGAS-STING pathway, furthering understanding of the crosstalk between the tumor cells and immune system.


Subject(s)
Exosomes , Membrane Proteins , Nucleotides, Cyclic , Nucleotidyltransferases , Phosphoric Diester Hydrolases , Pyrophosphatases , Signal Transduction , Nucleotides, Cyclic/metabolism , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Signal Transduction/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Exosomes/metabolism , Exosomes/genetics , Mice , Animals , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/immunology , Cell Line, Tumor , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
5.
Talanta ; 273: 125875, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452591

ABSTRACT

Rapid and quantitative detection of foodborne bacteria is of great significance to public health. In this work, an aptamer-mediated double strand displacement amplification (SDA) strategy was first explored to couple with microchip electrophoresis (MCE) for rapid and ultrasensitive detection of Salmonella typhimurium (S. Typhimurium). In double-SDA, a bacteria-identified probe consisting of the aptamer (Apt) and trigger sequence (Tr) was ingeniously designed. The aptamer showed high affinity to the S. Typhimurium, releasing the Tr sequence from the probe. The released Tr hybridized with template C1 chain, initiating the first SDA to produce numerous output strands (OS). The second SDA process was induced with the hybridization of the liberated OS and template C2 sequence, generating a large number of reporter strands (RS), which were separated and quantified through MCE. Cascade signal amplification and rapid separation of nucleic acids could be realized by the proposed double-SDA method with MCE, achieving the limit of detection for S. typhimurium down to 6 CFU/mL under the optimal conditions. Based on the elaborate design of the probes, the double-SDA assisted MCE strategy achieved better amplification performance, showing high separation efficiency and simple operation, which has satisfactory expectation for bacterial disease diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrophoresis, Microchip , Nucleic Acids , Salmonella typhimurium/genetics , Electrophoresis, Microchip/methods , Aptamers, Nucleotide/genetics , Nucleic Acid Hybridization , Bacteria , Nucleic Acid Amplification Techniques , Biosensing Techniques/methods , Limit of Detection
6.
Anal Chim Acta ; 1300: 342469, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38521570

ABSTRACT

More and more studies have found that microRNAs (miRNAs) are markers of cancer, and detection of miRNAs is beneficial for early diagnosis and prognosis of cancer. In this paper, the isothermal strand displacement polymerase reaction (ISDPR), which is an enzyme-assisted nucleic acid amplification method, was studied to combine with microchip electrophoresis (MCE) for a simultaneously detection of two cancer related miRNAs named microRNA-21 (miR-21) and microRNA-221 (miR-221). In the ISDPR amplification, two different DNA hairpins (HPs) were specifically designed, so that miR-21 and miR-221 could respectively bind to HPs and started ISDPR amplification to generate two different products which were ultimately detected by MCE. The optimal conditions of ISDPR were carefully investigated, and the limits of detection (LOD) of miR-21 and miR-221 were as low as 0.35 fM and 0.25 fM (S/N = 3) respectively under these conditions. The human lung tumor cells and serum samples were analyzed by this ISDPR-MCE method and satisfactory results were obtained, which means that this method is of high sensitivity, high efficiency, low reagent consumption and simple operation in miRNAs detection.


Subject(s)
Biosensing Techniques , Electrophoresis, Microchip , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/analysis , DNA/genetics , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Biosensing Techniques/methods
7.
Anal Chem ; 96(4): 1781-1788, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38214113

ABSTRACT

Efficient, accurate, and economical detection of pathogenic bacteria is crucial in ensuring food safety and preventing foodborne illnesses. How to fulfill the highly sensitive and simultaneous detection of multiple trace pathogenic bacteria is a big challenge. In this work, capillary electrophoresis coupled with a cyclic multiple primer generation rolling circle amplification (cyclic MPG-RCA) was studied for highly sensitive and simultaneous detection of three kinds of pathogenic bacteria. The cyclic MPG-RCA was based on a carefully designed clover-shaped DNA probe, in which three "leaves" corresponded to three types of aimed pathogenic bacteria: Shigella dysenteriae (S. dysenteriae), Salmonella enterica subsp. enterica serovar Typhi (S. Typhi), and Vibrio parahaemolyticus (V. parahaemolyticus). Under the optimal experimental conditions, the limits of detection (S/N = 3) of this method for bacterial target DNA were 11.4 amol·L-1 (S. dysenteriae), 4.88 amol·L-1 (S. Typhi), and 14.9 amol·L-1 (V. parahaemolyticus), and the conversion concentrations for the target bacteria were 10 colony-forming units (CFU)·mL-1 (S. dysenteriae), 3 CFU·mL-1 (S. Typhi), and 12 CFU·mL-1 (V. parahaemolyticus). This method had been applied to the detection of tap water samples with good results, which proved that it could be used as an effective tool for trace pathogenic bacteria monitoring in foods, environments, and medicines.


Subject(s)
Bacteria , Vibrio parahaemolyticus , Salmonella , Vibrio parahaemolyticus/genetics , Electrophoresis, Capillary
8.
Foods ; 12(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37685137

ABSTRACT

Selenium-enriched rapeseed (SER) is an emerging oil seed. Roasting is beneficial in improving oil yield and promoting the release of micronutrients into SER oil, but high temperatures and dry air lead to selenium loss and fatty acid degradation in SER. To minimize the selenium loss and improve the SER oil quality, this study investigated the effects of vacuum (VC) roasting (90-170 °C for 30 min) on the SER selenium content, Maillard reaction products, oxidative stability, and physicochemical properties of SER oil, with conventional dry air (DA) roasting as the control. The results showed that the selenium loss in VC-roasted SER meals increased from 7.17 to 19.76% (90-170 °C for 30 min), which was 47.13 to 80.48% of that in DA-roasted SER meals, while no selenium was detected in the SER oils. Compared to DA roasting, VC roasting (90-170 °C for 30 min) reduced lipid oxidation products (LOPs), Maillard reaction products (MRPs), and benzo[a]pyrene contents, and increased carotenoids, unsaturated fatty acid contents, reaching a maximum oil yield of 35.58% at a lower temperature (130 °C for 30 min). Selenium contents exhibited a highly significant negative correlation with MRPs and LOPs (p ≤ 0.005). The VC roasting retarded selenium loss and improved SER oil quality compared to conventional DA roasting.

9.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685910

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , ErbB Receptors/genetics , rab27 GTP-Binding Proteins
10.
J Chromatogr A ; 1706: 464275, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37542930

ABSTRACT

Efficient, accurate and economical detection of pathogenic bacteria is crucial in ensuring food safety and preventing foodborne illnesses. In this study, a capillary electrophoresis coupled laser-induced fluorescence assay (CE-LIF) was developed for the detection of Escherichia coli (E. coli) by detecting its specific DNA. The CE-LIF was assisted by both online enrichment and offline amplification to improve the detection sensitivity of bacterial DNA. Here the online amplification was performed by large volume sample stacking (LVSS), while the offline amplification was nicking endonuclease signal amplification (NESA). Under the optimal experimental conditions, the detection limit of bacterial target DNA was 2.5 fM, and the conversion concentration of E. coli was 3 CFU · mL-1. The method had been applied to the detection of commercially available skim milk samples with good results, which proved that it could be used as an effective tool for food and environmental bacteria monitoring.


Subject(s)
DNA , Escherichia coli , Escherichia coli/genetics , Electrophoresis, Capillary/methods , DNA, Bacterial
11.
Talanta ; 265: 124930, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37451122

ABSTRACT

The analysis of exosomes is significant as they can be used for various pathophysiological processes, especially cancer related intercellular communication. Therefore, a convenient, reliable, and sensitive detection method is urgently needed. Strand displacement amplification (SDA) and catalytic hairpin assembly (CHA) are two kinds of effective isothermal nucleic acid amplification methods. In this article, an efficient quantitative MCE method for detecting human breast cancer cell (MCF-7) exosomes assisted by triple amplification strategies combining cholesterol probe (Chol-probe) with SDA-CHA was first developed. CD63 aptamer was immobilized on the avidin magnetic beads to specifically capture exosomes and then Chol-probe with high affinity was spontaneously inserted into the exosome membrane, which was the first step of amplification strategy to improve detection sensitivity. After magnetic separation, Chol-probe could complement ssDNA and trigger SDA, producing a large number of DNA sequences (Ta) to trigger CHA, achieving SDA-CHA amplification. Under optimal conditions, the detection limit (LOD) for MCF-7 exosomes was as low as 26 particle/µL (S/N = 3). This method provides an effective approach for sensitive and accurate quantification of tumor exosomes, and can be expected to detect exosomes in clinical samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrophoresis, Microchip , Exosomes , Humans , Aptamers, Nucleotide/genetics , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Biosensing Techniques/methods
12.
Front Plant Sci ; 14: 1136873, 2023.
Article in English | MEDLINE | ID: mdl-37056491

ABSTRACT

Bcl-2-associated athanogene (BAG) gene family is a highly conserved molecular chaperone cofactor in evolution from yeast to humans and plants playing important roles in a variety of signal pathways. Plant BAG proteins have special structures, especially those containing CaM-binding IQ motifs which are unique to plants. While early studies focused more on the structure and physiological function of plant BAGs, recent studies have revealed many novel functional mechanisms involved in multiple cellular processes. How to achieve signal specificity has become an interesting topic of plant BAG research. In this review, we have provided a historic view of plant BAG research and summarized recent advances in the establishment of BAG as essential components in normal plant growth, environmental stress response, and plant immunity. Based on the relationship between BAG proteins and their newly interacting proteins, this review highlights the functional mechanisms of various cellular signals mediated by plant BAGs. Future work needs to focus on the post-translational modification of BAG proteins, and on understanding how specificity is achieved among BAG signaling pathways.

13.
Arch Oral Biol ; 151: 105696, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37086494

ABSTRACT

OBJECTIVE: The poor survival rate of head and neck squamous cell carcinoma (HNSCC), one of the most prevalent human cancer, is attributed to frequent locoregional recurrence and lymph node metastases. Though it is reported that the expression of ALG-2 interacting protein X (ALIX) closely correlates with the progression of various tumors, its role in HNSCC remains unclear. The present study aims to investigate the role of ALIX in the development of HNSCC. DESIGN: With immunohistochemical staining, the expression levels of ALIX and series of related functional proteins were compared in normal mucosal (n = 18), HNSCC tissues (n = 54), and metastatic lymph nodes (n = 11). Further, the correlation analysis was performed among the proteins detected. By knocking down ALIX in HNSCC cell lines, the correlation of ALIX with the proteins was verified in vitro. The role of ALIX in proliferation, migration, and invasion of HNSCC cells was further studied by flow cytometry, wounding healing, and transwell assays, respectively. RESULTS: Higher expression level of ALIX was revealed in HNSCC samples, especially in metastatic lymph nodes, than in normal mucosal tissues. Accordingly, increasing levels of MMP9, MMP14, and VEGF-C were also discovered in metastatic lymph nodes and significantly correlated with the expression of ALIX. In vitro assays demonstrated that the knockdown of ALIX reduced both the transcriptional and protein levels of MMP9, MMP14, and VEGF-C, together with suppressed migration and weakened invasion of HNSCC cell lines. CONCLUSIONS: ALIX up-regulated the expression of MMP9, MMP14 and VEGF-C, and promoted migration and invasion of HNSCC cells.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Matrix Metalloproteinase 14 , Matrix Metalloproteinase 9/metabolism , Neoplasm Recurrence, Local , Squamous Cell Carcinoma of Head and Neck , Vascular Endothelial Growth Factor C
14.
Food Chem ; 413: 135616, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36758391

ABSTRACT

High temperature is beneficial for the removal of polycyclic aromatic hydrocarbons (PAHs) from oil via steam, but leads to an increase in the content of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE). To inhibit the production of 3-MCPDE and GE during the removal of PAHs, rapeseed oil was deodorized using ethanol steam at low-temperature (140-220 °C) (L-ESD) and the content changes were studied for PAHs, 3-MCPDE and GE, and compared with conventional high-temperature water steam deodorization (H-WSD) (250 °C for 60 min). The removal rates of PAHs in L-ESD oil can be higher than those in conventional H-WSD oil, and the contents of 3-MCPDE and GE in L-ESD oil (140-180 °C for 60-100 min) ranged from 48.32 to 73.65 % and 50.49-69.90 %, respectively, in H-WSD oil due to the lower temperature of ethanol steam deodorization. These results indicate that L-ESD is beneficial in minimizing the contents of PAHs, 3-MCPDE and GE in vegetable oil.


Subject(s)
Polycyclic Aromatic Hydrocarbons , alpha-Chlorohydrin , Temperature , Rapeseed Oil , Steam , Palm Oil , Ethanol , Distillation , Esters , Plant Oils , Water
15.
Adv Sci (Weinh) ; 10(7): e2205566, 2023 03.
Article in English | MEDLINE | ID: mdl-36599707

ABSTRACT

Extracellular vesicles (EVs) are cell-derived membrane-enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs' behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs. The interplays between tumor cell-derived small EVs (T-sEVs) and endothelial cells (ECs) are specifically investigated based on this platform. It is revealed that, following a clathrin-mediated endocytosis by ECs, T-sEVs are transported to the perinuclear region in a typical three-stage pattern. Importantly, T-sEVs frequently interact with and finally enter lysosomes, followed by quick release of their carried miRNAs. This study, for the first time, reports the entire process and detailed dynamics of T-sEV transportation and cargo-release in ECs, leading to better understanding of their proangiogenic functions. Additionally, the QD-based SPT technique will help uncover more secrets of sEV-mediated cell-cell communication.


Subject(s)
Extracellular Vesicles , MicroRNAs , MicroRNAs/analysis , Endothelial Cells , Extracellular Vesicles/chemistry , Cell Communication , Endocytosis
16.
Anal Chem ; 95(2): 1016-1026, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36534080

ABSTRACT

Small extracellular vesicles (sEVs) are heterogeneous membrane-bound vesicles that carry numerous bioactive molecules. Studies have reported that sEVs carrying PD-L1 on the surface could contribute to immunosuppression; however, the precise mechanisms are unclear. To fully dissect their mode of action, it requires qualified methods to specifically isolate natural PD-L1-positive sEVs from heterogeneous sEVs. This study reported an aptamer-assisted capture-and-release strategy for traceless isolation of PD-L1-positive sEVs. The PD-L1 aptamer-anchored magnetic microspheres enable the specific capture of PD-L1-positive sEVs. The traceless release of captured PD-L1-positive sEVs was triggered by competition of complementary oligonucleotides, endowing the obtained label-free PD-L1-positive sEVs with natural properties. Benefited from this traceless isolation strategy, the distinct molecule profiles in adhesion and immuno-regulation between PD-L1-positive and PD-L1-negative sEVs were revealed. Compared to PD-L1-negative sEVs, PD-L1-positive sEVs were much more concentrated in cadherin binding, accompanied by increased adhesion to lymphatic endothelial cells and T cells but decreased adhesion to the extracellular matrix. Moreover, PD-L1-positive sEVs could transfer their enriched immunosuppressive "synapse"-related proteins to antigen-presenting cells, thereby inducing a tolerogenic-like phenotype. In summary, the present work dissects the subpopulation signature and action mode of PD-L1-positive sEVs for the first time and provides a general approach to the traceless isolation of sEV subpopulations.


Subject(s)
Endothelial Cells , Extracellular Vesicles , B7-H1 Antigen/metabolism , Extracellular Vesicles/metabolism , Phenotype , Aptamers, Peptide/chemistry , Aptamers, Peptide/pharmacology
17.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201485

ABSTRACT

Extracellular vesicles (EVs), with exosomes at the forefront, are key in transferring cellular information and assorted biological materials, including nucleic acids. While exosomal RNA has been thoroughly examined, exploration into exosomal DNA (exoDNA)-which is stable and promising for cancer diagnostics-lags behind. This hybrid genetic material, combining contributions from both nuclear and mitochondrial DNA (mtDNA), is rooted in the cytoplasm. The enigmatic process concerning its cytoplasmic encapsulation continues to captivate researchers. Covering the entire genetic landscape, exoDNA encases significant oncogenic alterations in genes like TP53, ALK, and IDH1, which is vital for clinical assessment. This review delves into exosomal origins, the ins and outs of DNA encapsulation, and exoDNA's link to tumor biology, underscoring its superiority to circulating tumor DNA in the biomarker arena for both detection and therapy. Amidst scientific progress, there are complexities in the comprehension and practical application of the exoDNA surface. Reflecting on these nuances, we chart the prospective research terrain and potential pitfalls, forging a path for future inquiry. By illuminating both the known and unknown facets of exoDNA, the objective of this review is to provide guidance to the field of liquid biopsy (LB) while minimizing the occurrence of avoidable blind spots and detours.

18.
Article in English | MEDLINE | ID: mdl-36429606

ABSTRACT

The COVID-19 pandemic has produced a far-reaching influence on higher education and the teaching activities of teachers in Chinese universities. The intentions of teachers in universities for using the micro-lecture, one of the educational informationization products, and the influencing factors of the intentions for using micro-lectures, are changing in the post COVID-19 era. This paper, based on the Technical Acceptance Model (TAM) and the Unified Theory of Acceptance and Use of Technology (UTAUT), constructed the research hypotheses for the influence factors of micro-lecture usage intentions of teachers in universities in the post COVID-19 era, and made corresponding verifications through the Structural Equation Model (SEM). As shown by the results therefrom: (1) the micro-lecture usage experience before the outbreak of the COVID-19 pandemic significantly affected the usage intentions of teachers in universities; (2) the perceived usefulness influenced the usage intention directly, but the perceived ease of use did not directly produce influence; (3) policy impact had no significant influence on the perceived usefulness and the perceived ease of use of university teachers for micro-lecture use; (4) social relations and personal innovativeness have significant impacts on perceived usefulness, teaching objectives and micro-lecture characteristics have significant impacts on the perceived ease of use. In this paper, suggestions and opinions on popularizing micro-lecture usage in the post COVID-19 era were put forward on the basis of research conclusions therein.


Subject(s)
COVID-19 , Intention , Humans , COVID-19/epidemiology , Universities , Pandemics , Surveys and Questionnaires , China/epidemiology
19.
Article in English | MEDLINE | ID: mdl-36141649

ABSTRACT

The satisfaction of highly educated citizens with community services for COVID-19 represents the attitude of the middle class and plays an important role in both the social and political stability of a country. The aim of this paper was to determine which factors influence public satisfaction with COVID-19 services in a highly educated community. Through a literature review and using the American Customer Satisfaction Index (ACSI) model, this paper constructed a public satisfaction model of community services for COVID-19 and proposed relevant research hypotheses. A community with many highly educated residents in Beijing was selected as the case study, where 450 official questionnaires were distributed based on the age ratio of residents, with 372 valid questionnaires being collected from May 2021 to July 2021. The study results obtained by a structural equation model (SEM) show that: (1) public satisfaction is significantly and positively influenced by quality perception (0.305 **), public demand (0.295 **), and service maturity (0.465 ***); (2) public satisfaction has a significantly positive effect on service image (0.346 ***) and public trust (0.232 **), and service image significantly affects public trust (0.140 *); (3) service maturity is positively influenced by public demand (0.460 ***) and quality perception (0.323 *); and (4) public demand is positively influenced by quality perception (0.693 ***) (* p < 0.05; ** p < 0.01; *** p < 0.00). The conclusions of the study can provide suggestions and recommendations to improve the satisfaction of highly educated residents with community healthcare services during the COVID-19 pandemic.


Subject(s)
COVID-19 , Personal Satisfaction , Beijing/epidemiology , COVID-19/epidemiology , Humans , Pandemics , Patient Satisfaction , Social Welfare
20.
Cell Tissue Res ; 390(2): 229-243, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35916917

ABSTRACT

Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.


Subject(s)
Endothelial Cells , Vascular Malformations , Humans , Endothelial Cells/metabolism , Vascular Malformations/metabolism , Stem Cells/metabolism , Pericytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...