Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 43(10): 2562-2572, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35948751

ABSTRACT

Tax1 banding protein 1 (Tax1bp1) was originally identified as an NF-κB regulatory protein that participated in inflammatory, antiviral and innate immune processes. Tax1bp1 also functions as an autophagy receptor that plays a role in autophagy. Our previous study shows that Tax1bp1 protects against cardiomyopathy in STZ-induced diabetic mice. In this study we investigated the role of Tax1bp1 in heart failure. Pressure overload-induced heart failure model was established in mice by aortic banding (AB) surgery, and angiotensin II (Ang II)-induced heart failure model was established by infusion of Ang II through osmotic minipump for 4 weeks. We showed that the expression levels of Tax1bp1 in the heart were markedly increased 2 and 4 weeks after AB surgery. Knockdown of Tax1bp1 in mouse hearts significantly ameliorated both AB- and Ang II infusion-induced heart failure parameters. On the contrary, AB-induced heart failure was aggravated in cardiac-specific Tax1bp1 transgenic mice. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) under Ang II insult. We demonstrated that the pro-heart failure effect of Tax1bp1 resulted from its interaction with the E3 ligase ITCH to promote the transcription factor P73 ubiquitination and degradation, causing enhanced BCL2 interacting protein 3 (BNIP3)-mediated cardiomyocyte apoptosis. Knockdown ITCH or BNIP3 in NRCMs significantly reduced Ang II-induced apoptosis in vitro. Similarly, BNIP3 knockdown attenuated heart failure in cardiac-specific Tax1bp1 transgenic mice. In the left ventricles of heart failure patients, Tax1bp1 expression level was significantly increased; Tax1bp1 gene expression was negatively correlated with left ventricular ejection fraction in heart failure patients. Collectively, the Tax1bp1 increase in heart failure enhances ITCH-P73-BNIP3-mediated cardiomyocyte apoptosis and induced cardiac injury. Tax1bp1 may serve as a potent therapeutic target for the treatment of heart failure.• Cardiac Tax1bp1 transgene mice were more vulnerable to cardiac dysfunction under stress.• Cardiac Tax1bp1 transgene mice were more vulnerable to cardiac dysfunction under stress.• Knockout of Tax1bp1 in mouse hearts ameliorated heart failure induced by pressure overload.• Tax1bp1 interacts with the E3 ligase Itch to promote P73 ubiquitination and degradation, causing enhanced BNIP3-mediated apoptosis.• Tax1bp1 may become a target of new therapeutic methods for treating heart failure.


Subject(s)
Diabetes Mellitus, Experimental , Heart Failure , Angiotensin II/pharmacology , Animals , Antiviral Agents/pharmacology , Apoptosis , Diabetes Mellitus, Experimental/complications , Heart Failure/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mitochondrial Proteins , Myocytes, Cardiac , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Stroke Volume , Ubiquitin-Protein Ligases/metabolism , Ventricular Function, Left
2.
Int J Biol Sci ; 16(11): 1798-1810, 2020.
Article in English | MEDLINE | ID: mdl-32398950

ABSTRACT

Aims: The High Mobility Group A1 (HMGA1) proteins, serving as a dynamic regulator of gene transcription and chromatin remodeling, play an influential part in the pathological process of a large number of cardiovascular diseases. However, the precise role of HMGA1 in sepsis induced cardiomyopathy (SIC) remains unintelligible. This research was designed to illustrate the effect of HMGA1 involved in SIC. Methods and Results: Cardiomyocyte-specific HMGA1 overexpression was obtained using an adeno-associated virus system with intramyocardial injection in mice heart. The model of SIC in mice was constructed via intraperitoneal injection of lipopolysaccharide (LPS) for 6h. H9c2 rat cardiomyocytes was stimulated with LPS for 12h. HMGA1 expression was upregulated in murine inflammatory hearts as well as LPS stimulated H9c2 cardiomyocytes. HMGA1-overexpressing exhibited aggravated cardiac dysfunction, cardiac inflammation as well as cells apoptosis following LPS treatment both in vivo and in vitro experiment. Interestingly, HMGA1 knockdown in H9c2 cardiomyocytes attenuated LPS-induced cardiomyocyte inflammation, but aggravated cell apoptosis. Mechanistically, we found that overexpression of HMGA1 induced increased expression of cyclooxygenase-2 (COX-2). COX-2 inhibitor alleviated the aggravation of inflammation and apoptosis in HMGA1 overexpressed H9c2 cardiomyocytes whereas HMGA1 knockdown induced a reduction in signal transducer and activators of transcription 3 (STAT3) expression. STAT3 agonist reversed HMGA1 silence induced anti-inflammatory effects, while ameliorated cell apoptosis induced by LPS. Conclusion: In conclusion, our results suggest that overexpression of HMGA1 aggravated cardiomyocytes inflammation and apoptosis by up-regulating COX-2 expression, while silence of HMGA1 expression attenuated inflammation but aggregated cell apoptosis via down-regulation of STAT3.


Subject(s)
HMGA1a Protein/metabolism , Lipopolysaccharides/toxicity , Myocarditis/chemically induced , Myocarditis/prevention & control , Myocytes, Cardiac/drug effects , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Line , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , HMGA1a Protein/genetics , Inflammation/chemically induced , Male , Mice , Mice, Inbred C57BL , Myocarditis/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Rats
3.
Rev Cardiovasc Med ; 21(4): 615-625, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33388007

ABSTRACT

The novel coronavirus disease (COVID-19) has spread all over the world in a short time. Information about the differences between COVID-19 patients with and without hypertension is limited. To explore the characteristics and outcomes differences between COVID-19 patients with and without hypertension, the medical records and cardiac biomarkers of 414 patients were analyzed. A total of 149 patients had a history of hypertension, while 265 patients did not have hypertension, and the groups were compared based on their clinical characteristics and laboratory findings as well as the hazard risk for composite outcomes, including intensive care unit (ICU) admission, mechanical ventilation, or death. The results are as follows. On admission, 22.1% of patients in hypertension group had elevated high sensitivity troponin I (hs-TNI > 26 pg/mL), which was higher than the proportion in the nonhypertension group (6.4%). Median NT-proBNP levels in patients with hypertension (141.9 pg/mL) were higher than those in patients without hypertension (77.3 pg/mL). Patients in the hypertension group had a higher risk for in-hospital death [HR: 2.57, 95% CI (1.46~4.51)]. However, the impact of hypertension on the prognosis was not significant after adjusting for age and sex. Multivariate Cox hazard regression confirmed that NT-proBNP levels in the highest tertile (upper 75 % of patients with hypertension) was an independent risk factor for in-hospital death in all COVID-19 patients. Taken together, hypertension per se had a modest impact on the prognosis in COVID-19 patients. In COVID-19 patients with and without hypertension, NT-proBNP may be a better predictor of prognosis than hs-TNI.


Subject(s)
COVID-19/epidemiology , Hypertension/epidemiology , Pandemics , SARS-CoV-2 , Aged , Comorbidity , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Factors
4.
J Cell Mol Med ; 23(9): 6466-6478, 2019 09.
Article in English | MEDLINE | ID: mdl-31293067

ABSTRACT

Cardiac remodelling refers to a series of changes in the size, shape, wall thickness and tissue structure of the ventricle because of myocardial injury or increased pressure load. Studies have shown that cardiac remodelling plays a significant role in the development of heart failure. Zingerone, a monomer component extracted from ginger, has been proven to possess various properties including antioxidant, anti-inflammatory, anticancer and antidiabetic properties. As oxidative stress and inflammation contribute to acute and chronic myocardial injury, we explored the role of zingerone in cardiac remodelling. Mice were subjected to aortic banding (AB) or sham surgery and then received intragastric administration of zingerone or saline for 25 days. In vitro, neonatal rat cardiomyocytes (NRCMs) were treated with zingerone (50 and 250 µmol/L) when challenged with phenylephrine (PE). We observed that zingerone effectively suppressed cardiac hypertrophy, fibrosis, oxidative stress and inflammation. Mechanistically, Zingerone enhanced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) activation via increasing the phosphorylation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Additionally, we used Nrf2-knockout (KO) and eNOS-KO mice and found that Nrf2 or eNOS deficiency counteracts these cardioprotective effects of zingerone in vivo. Together, we concluded that zingerone may be a potent treatment for cardiac remodelling that suppresses oxidative stress via the eNOS/Nrf2 pathway.


Subject(s)
Aorta/drug effects , Guaiacol/analogs & derivatives , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Ventricular Remodeling/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Aorta/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Cells, Cultured , Fibrosis/drug therapy , Fibrosis/metabolism , Guaiacol/pharmacology , Heart Failure/drug therapy , Heart Failure/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Phenylephrine/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...