Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Exp Ther Med ; 26(3): 454, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37614422

ABSTRACT

Cytomegalovirus (CMV) infection is one of the most common infectious complications following hematopoietic stem cell transplantation (HSCT); however, cases involving multiple organs at the same time are rare. The present study describes a case of CMV pneumonia combined with CMV DNAemia and CMV cystitis after HSCT. A 33-year-old male patient with acute myeloid leukemia was treated with HSCT. The first month after HSCT, the patient developed a cough and shortness of breath. At 2 months post-HSCT, the patient developed hematuria. The CMV DNA levels in the blood and urine were elevated; bronchoalveolar lavage fluid (BALF) was also positive for CMV DNA. Heterotypic cells exhibiting a large nuclear morphology were observed in the BALF and bronchial brushes. Recurrent and progressive ground-glass opacities were evident on chest computed tomography. The patient was diagnosed with CMV pneumonia complicated by CMV DNAemia and CMV cystitis, and was treated with a combination of ganciclovir and foscarnet, along with immunoglobulin therapy. The patient was cured and discharged. It was determined that the CMV DNA in the blood was inconsistent with that in the BALF, which delayed the early diagnosis of CMV pneumonia. The association between T-cell immune function and the therapeutic efficacy for CMV multi-organ infection following HSCT is known to be significant. Moreover, the timely administration of ganciclovir and foscarnet in combination with immunoglobulin therapy demonstrated favorable clinical outcomes.

2.
Nat Commun ; 12(1): 4277, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257316

ABSTRACT

Many soft tissues are compression-stiffening and extension-softening in response to axial strains, but common hydrogels are either inert (for ideal chains) or tissue-opposite (for semiflexible polymers). Herein, we report a class of astral hydrogels that are structurally distinct from tissues but mechanically tissue-like. Specifically, hierarchical self-assembly of amphiphilic gemini molecules produces radial asters with a common core and divergently growing, semiflexible ribbons; adjacent asters moderately interpenetrate each other via interlacement of their peripheral ribbons to form a gel network. Resembling tissues, the astral gels stiffen in compression and soften in extension with all the experimental data across different gel compositions collapsing onto a single master curve. We put forward a minimal model to reproduce the master curve quantitatively, underlying the determinant role of aster-aster interpenetration. Compression significantly expands the interpenetration region, during which the number of effective crosslinks is increased and the network strengthened, while extension does the opposite. Looking forward, we expect this unique mechanism of interpenetration to provide a fresh perspective for designing and constructing mechanically tissue-like materials.

3.
Nat Commun ; 10(1): 4954, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672981

ABSTRACT

The radial geometry with rays radiated from a common core occurs ubiquitously in nature for its symmetry and functions. Herein, we report a class of synthetic asters with well-defined core-ray geometry that can function as elastic and radial skeletons to harbor nano- and microparticles. We fabricate the asters in a single, facile, and high-yield step that can be readily scaled up; specifically, amphiphilic gemini molecules self-assemble in water into asters with an amorphous core and divergently growing, twisted crystalline ribbons. The asters can spontaneously position microparticles in the cores, along the radial ribbons, or by the outer rims depending on particle sizes and surface chemistry. Their mechanical properties are determined on single- and multiple-aster levels. We further maneuver the synthetic asters as building blocks to form higher-order structures in virtue of aster-aster adhesion induced by ribbon intertwining. We envision the astral structures to act as rudimentary spatial organizers in nanoscience for coordinated multicomponent systems, possibly leading to emergent, synergistic functions.

4.
Nat Commun ; 10(1): 3314, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346168

ABSTRACT

Polymer networks are fundamental from cellular biology to plastics technology but their intrinsic inhomogeneity is masked by the usual ensemble-averaged measurements. Here, we construct direct maps of crosslinks-symbolic depiction of spatially-distributed elements highlighting their physical features and the relationships between them-in an actin network. We selectively label crosslinks with fluorescent markers, track their thermal fluctuations, and characterize the local elasticity and cross-correlations between crosslinks. Such maps display massive heterogeneity, reveal abundant anticorrelations, and may contribute to address how local responses scale up to produce macroscopic elasticity. Single-crosslink microscopy offers a general, microscopic framework to better understand crosslinked molecular networks in undeformed or strained states.


Subject(s)
Actins/chemistry , Biopolymers/chemistry , Cross-Linking Reagents/chemistry , Elasticity , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...