Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861056

ABSTRACT

The use of invasive mechanical ventilation (IMV) is crucial in rescuing patients with respiratory dysfunction. Accurately predicting the demand for IMV is vital for clinical decision-making. However, current techniques are invasive and challenging to implement in pre-hospital and emergency rescue settings. To address this issue, a real-time prediction method utilizing only non-invasive parameters was developed to forecast IMV demand in this study. The model introduced the concept of real-time warning and leveraged the advantages of machine learning and integrated methods, achieving an AUC value of 0.935 (95% CI 0.933-0.937). The AUC value for the multi-center validation using the AmsterdamUMCdb database was 0.727, surpassing the performance of traditional risk adjustment algorithms (OSI(oxygenation saturation index): 0.608, P/F(oxygenation index): 0.558). Feature weight analysis demonstrated that BMI, Gcsverbal, and age significantly contributed to the model's decision-making. These findings highlight the substantial potential of a machine learning real-time dynamic warning model that solely relies on non-invasive parameters to predict IMV demand. Such a model can provide technical support for predicting the need for IMV in pre-hospital and disaster scenarios.

2.
Sci Rep ; 9(1): 19016, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831815

ABSTRACT

Ensuring stable crop yield increases to meet rising demand is an important issue globally, particularly when accounting for climate change. In this study, using observations, reanalysis datasets, and the Hodrick and Prescott filter method, we find that changes in a distinct pattern of Indian Ocean-Pacific five-pole (IPFP) SST (sea surface temperature) are strongly linked to the ensuing year's winter wheat climatic yield (the part of yield that fluctuation caused by climatic factors change) in the North China Plain (NCP), which is the main production region of winter wheat in China. Here we define a normalized IPFP index (IPFPI) and demonstrate that the autumn IPFPI (1948-2014) is well correlated with the ensuing year's winter wheat climatic yield (1949-2015), particularly for October (r = 0.69; n = 67; P < 0.001). A composite analysis shows that the October IPFP is correlated with sowing-period and emergence-period climate factors in the NCP. When the October IPFP is in a positive phase, the atmosphere geopotential height fields and water vapor flux are bebefitial to rainfall formation in NCP, and the precipitation and soil moisture are higher in NCP and benefit winter wheat growth, thus increasing the climatic yield. In addition, accumulated rainfall and soil water content might influence winter wheat growth from sowing and emergence (autumn) to the returning green stage (following spring).

SELECTION OF CITATIONS
SEARCH DETAIL
...