Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(25): 10365-10372, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38869249

ABSTRACT

Biomimetic cytochrome P450 for chemical activation of environmental carcinogens is an efficient in vitro model for evaluating their mutagenicity and ultimately acquiring the metabolites that cannot be easily accessed by conventional routes of organic synthesis. Different kinds of mutagen derived from polyaromatic hydrocarbons (PAHs) by metalloporphyrin/oxidant model systems have been reported, but the underlying molecular mechanisms are poorly understood. Herein, we have for the first time demonstrated an effective surface-enhanced Raman scattering (SERS) protocol to study the dynamics and biomimetic metabolic behaviors of pyrene (Pyr) in the presence of various oxygen donors. Quantitative information on the relative concentration of Pyr and its metabolites in the biomimetic system can be extracted from the SERS spectra. On the basis of our results, we conclude that the oxidative metabolism of Pyr is highly influenced by the types and concentrations of oxygen donors, leading to the formation of 1-hydroxypyrene and dioxygenated products. Besides, the addition of an appropriate amount of an organic solvent can promote the formation of secondary oxidation products. These results offer valuable insights into the dynamics of PAHs metabolism and the regulation of their metabolic pathways in biomimetic activation. In comparison to traditional liquid chromatography-mass spectrometry, the present SERS approach is more suitable for high-throughput evaluation of the metabolic process and kinetics of PAHs. We anticipate that this approach will enable a more general and comprehensive tracking of metabolic dynamics and molecular mechanisms involved in the biomimetic activation of other xenobiotics, such as procarcinogens, promutagens, and drugs.


Subject(s)
Pyrenes , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Kinetics , Pyrenes/chemistry , Pyrenes/metabolism , Biomimetics , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Surface Properties , Activation, Metabolic , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction
2.
Anal Chem ; 95(41): 15333-15341, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37793058

ABSTRACT

Accurate control of charge transfer is crucial to investigate the catalytic reaction mechanism of the biological oxidation process that biomedicine participates in. Herein, we have established an assembly model of metalloporphyrin framework (MPF) nanosheets as the active centers of biological enzymes. The introduction of Vitamin C (VC) into the MPF system can precisely modulate its content of charges. The surface-enhanced Raman scattering activity and peroxidase-like catalytic performance are enhanced simultaneously for the first time by manipulating the optimal molar ratio of an MPF to VC and the reaction sequence with target model molecules. We have confirmed that the formation of the intermediate of Fe(2+)-OOH species is specifically enhanced after VC modulation, which indicates that VC can regulate the oxidative stress of the active center of biological enzymes. This discovery not only accurately resolves the mechanism of VC-selective anticancer therapy but also has important significance for the precise treatment of VC synergistic targeting medicines.


Subject(s)
Ascorbic Acid , Metalloporphyrins , Oxidative Stress , Antioxidants/metabolism , Vitamins
3.
Anal Chem ; 94(15): 5987-5995, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35389611

ABSTRACT

Doping engineering is an efficient strategy to manipulate the optoelectronic properties of metal oxides for sensing, catalysis, and energy applications. Herein, we have demonstrated the fabrication of sulfur (S)-doped Mn-Co oxides to regulate their band and surface electronic structures, which is beneficial to enhancing the charge transfer (CT) between the metal oxides and their adsorbed molecules. As expected, significantly enhanced SERS signals are achieved on S-doped Mn-Co oxide nanotubes, and the minimum detection concentration can reach as low as 10-8 M. Furthermore, the change in the electronic structure caused by S-doping provides different microelectric fields to influence the orientation of the interaction between the probe molecules and the substrate. Additionally, the evaluation of the oxidase-like catalytic activity of the substrate proved that, with an increase in the ratio of Co2+/Co3+ content, the number of electrons on the substrate increases, which promotes the CT process and further increases the degree of CT. The nonmetallic doping route in semiconducting metal oxides can provide effective and stable SERS activity; moreover, it provides a new strategy for exploring the relationship between CT in catalysis and SERS performance of semiconductors.

4.
J Hazard Mater ; 418: 126304, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34329016

ABSTRACT

The rapid development of cities and economic prosperity greatly motivates the growth of vehicular exhaust particles, especially the diesel-exhausted particles from the large fleet of passenger and freight, which present profound implications on climate, air quality, and biological health (e.g., pulmonary, autoimmune and cardiovascular diseases). As important physiochemical properties of atmospheric aerosols, however, the mixing state and effective density of individual particles emitted from diesel-powered vehicles under different driving conditions and their environmental implications remain uncertain. Here, a single-particle aerosol mass spectrometer (SPAMS) was used to investigate the chemical composition and vacuum aerodynamic diameter (Dva), along with the aerodynamic diameter (Da) from an aerodynamic aerosol classifier (AAC), to determine the effective density of primary particles emitted from a light- duty diesel vehicle (LDDV) under the launching and idling engine states. Interestingly, the particle types and effective density appear to vary significantly with the engine status. A single particle type of Ca-rich particles, named Na-Ca-PAH, was predominant in the idling state, whose chemical components may be affected by the lubricants and incomplete combustion, contributing to a higher effective density (0.66 ± 0.21 g cm-3). In contrast, launching particles exhibited a lower effective density (0.34 ± 0.17 g cm-3) because of the substantial elemental carbon (EC). In addition, the effective density depends not only on the particle size but also on the chemical components with various abundances. EC and Ca play opposite roles in the effective density of LDDV emissions. Notably, a higher proportion of polycyclic aromatic hydrocarbons (PAHs) was observed in the idling particles, contributing to 78 ± 1.2%. Given the high contribution to these PAH-containing particles in the idling state, indispensable precautions should be taken at bus stops or waiting for pedestrians. This study provides more comprehensive insights into the initial characteristics of LDDV particles due to the launching and idling states, which is beneficial for improving the model results of source apportionment and understanding its environmental behavior regarding human health.


Subject(s)
Air Pollutants , Aerosols , Air Pollutants/analysis , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Vehicle Emissions/analysis
5.
Sci Total Environ ; 765: 144290, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33401057

ABSTRACT

Inland transported sea spray aerosol (SSA) particles along with multiphase reactions are essential to drive the regional circulation of nitrogen, sulfur and halogen species in the atmosphere. Specially, the physicochemical properties of SSA will be significantly affected by the displacement reaction of chloride. However, the role of organic species and the mixing state on the chloride depletion of SSA during long-range inland transport remains unclear. Hence, a single particle aerosol mass spectrometer (SPAMS) was employed to investigate the particle size and chemical composition of individual SSA particles over inland southern China during the East Asian summer monsoon. Based on the variation of chemical composition, SSA particles were clustered into SSA-Aged, SSA-Bio and SSA-Ca. SSA-Aged was regarded as the aged Na-rich SSA particles. In comparison to the SSA-Aged, SSA-Bio involved some extra organic species associated with biological origin (i.e., organic nitrogen and phosphate). Each type occupies for approximately 50% of total detected SSA particles. Besides, SSA-Ca may relate to organic shell of Na-rich SSA particles, which is negligible (~3%). Tight correlation between Na and diverse organic acids was exhibited for the SSA-Aged (r2 = 0.52, p < 0.01) and SSA-Bio (r2 = 0.61, p < 0.01), reflecting the impact of organic acids to the chloride displacement during inland transport SSA particles. The chloride depletion occupied by organic acids is estimated to be up to 34%. It is noted that distinctly different degree of chloride depletion was observed between SSA-Aged and SSA-Bio. It is more likely to be attributed to the associated organic coatings for the SSA-Bio particles, which inhibits the displacement reactions between acids and chloride. As revealed from the mixing state of SSA-Bio, defined hourly mean peak area ratio of Cl / Na increases with the increasing phosphate and organic nitrogen. This finding provides additional basis for the improvement of modeling simulations in chlorine circulation and a comprehensive understanding of the effects of organics on chloride depletion of SSA particles.

6.
Nanotechnology ; 31(31): 315501, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32303010

ABSTRACT

In-situ and real-time ultra-sensitive monitoring for the degradation process of environmental pollutants is always an important issue of concern to many people. Herein, a multifunctional magnetic metal-organic framework (MOF)-based composite has been successfully constructed and applied in monitoring the disposal of cationic dyes. Owing to its particular MOFs shell and internal gold particles, the composite can be used as an efficient SERS substrate to ultra-sensitively detect the cationic dyes. Furthermore, the prepared MOF-based composite is also a peroxidase-like nanozyme, which can catalytically degrade the adsorbed cationic dyes. Additionally, the magnetic core in the MOF-based composite offers a good magnetic separation capacity, which makes a facile and rapid separation of the catalyst from the reacted solution for recyclability. This work has provided a new way to monitor the catalytic degradation process by SERS technique in the co-existence of catalyst and dye molecules in the reaction system, which can effectively eliminate the absorption of the catalyst compared with the UV-vis technique, showing promising applications in in-situ and real-time pollution disposal monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...