Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(23): 15261-15269, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38820131

ABSTRACT

Li-ion-based electric field control has been attracting significant attention, since it is able to penetrate deep into materials to exhibit diverse and controllable electrochemical processes, which offer more degrees of freedom to design multifunctional devices with low power consumption. As opposed to previous studies that mainly focused on single lithiation/delithiation mechanisms, we reveal three Li-ion modulation mechanisms in the same NiFe2O4 spinel ferrite by in situ magnetometry, i.e., intercalation, conversion, and space charge, which are respectively demonstrated in high, medium, and low voltage range. During the intercalation stage, the spinel structure is preserved, and a reversible modulation of magnetization arises from the charge transfer-induced variation of Fe valence states (Fe2+/Fe3+). Conversion-driven change in magnetization is the largest up to 89 emu g-1, due to the structural and magnetic phase transitions. Although both intercalation and conversion exhibit sluggish kinetics and long response times, the space charge manifests a faster switching speed and superior durability due to its interface electrostatic effect. These results not only provide a clear and comprehensive understanding on Li-based modulation mechanisms but also facilitate multifunctional and multiscenario applications, such as multistate memory, micromagnetic actuation, artificial synapse, and energy storage.

2.
Nano Lett ; 23(23): 11323-11329, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38019659

ABSTRACT

The orbital angular momentum (OAM) generation as well as its associated orbital torque is currently a matter of great interest in spin-orbitronics and is receiving increasing attention. In particular, recent theoretical work predicts that the oxidized light metal Cu can serve as an efficient OAM generator through its surface orbital Rashba effect. Here, for the first time, the crucial current-induced magnetic-field-free in-plane magnetization reversal is experimentally demonstrated in CoFeB/CuOx bilayers without any heavy elements. We show that the critical current density can be comparable to that of strong spin-orbit coupling systems with heavy metals (Pt and Ta) and that the magnetization reversal mechanism is governed by coherent rotation in the grains through the second-harmonic and magneto-optical Kerr effect measurements. Our results indicate that light metal oxides can play an equally important role as heavy metals in magnetization reversal, broadening the choice of materials for engineering spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...