Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11472, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794195

ABSTRACT

Crapemyrtle Bark Scale (Acanthococcus lagerstroemiae; CMBS) is an invasive pest species that primarily infest crapemyrtles (Lagerstroemia spp.) in the United States. Recent reports have revealed the dire threat of CMBS to attack not only crapemrytles but also the U.S. native species with expanded host plants such as American beautyberry (Callicarpa spp.) and Hypericum kalmianum L. (St. Johnswort). A better understanding of plant-insect interaction will provide better and environmental-friendly pest management strategies. In this study, we constructed the first comprehensive life table for CMBS to characterize its biological parameters, including developmental stages, reproductive behavior, and fecundity. The indirect effects of three plant nutrient conditions (water, 0.01MS, and 0.1MS) on CMBS populations were examined using the age-stage, two-sex life table. The demographic analyses revealed that the plant nutrient conditions had significantly altered CMBS development in terms of the intrinsic rate of increase (r), the finite rate of increase (λ), the net reproductive rate (R0), and mean generation time (T). Higher r, λ, and R0 were recorded under nutrient-deficient conditions (water), while CMBS reared on plants with healthier growing conditions (0.1MS) had the most prolonged T. Overall, CMBS shows better insect performance when reared on plants under nutrient-deficient conditions.


Subject(s)
Hemiptera , Plant Bark , Animals , Life Tables , Nutrients , Water
2.
Insects ; 13(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35735833

ABSTRACT

Host range confirmation of invasive hemipterans relies on the evaluation of plant susceptibility though greenhouse or field trials, which are inefficient and time-consuming. When the green industry faces the fast-spreading threat of invasive pests such as crapemyrtle bark scale (Acanthococcus lagerstroemiae), it is imperative to timely identify potential host plants and evaluate plant resistance/susceptibility to pest infestation. In this study, we developed an alternative technology to complement the conventional host confirmation methods. We used electrical penetration graph (EPG) based technology to monitor the A. lagerstroemiae stylet-tip position when it was probing in different plant tissues in real-time. The frequency and relative amplitude of insect EPG waveforms were extracted by an R programming-based software written to generate eleven EPG parameters for comparative analysis between plant species. The results demonstrated that the occurrences of phloem phase and xylem phase offered conclusive evidence for host plant evaluation. Furthermore, parameters including the percentage of insects capable of accessing phloem tissue, time duration spent on initiating phloem phase and ingesting phloem sap, provided insight into why host plant susceptibility differs among similar plant species. In summary, this study developed a novel real-time diagnostic tool for quick A. lagerstroemiae host confirmation, which laid the essential foundation for effective pest management.

3.
Insects ; 12(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374734

ABSTRACT

Crapemyrtle bark scale (CMBS, Acanthococcus lagerstroemiae), an invasive polyphagous sap-sucking hemipteran, has spread across 14 states of the United States since 2004. The infestation of CMBS has negatively impacted the flowering of ornamental plants and even the fruiting of some crops. Host identification is critical for determining potential risks in ecosystems and industries and helps develop strategic management. A host confirmation test was performed over 25 weeks using six Lagerstroemia species (L. caudata, L. fauriei 'Kiowa', L. indica 'Dynamite', L. limii, L. speciosa, and L. subcostata) and California loosestrife (Lythrum californicum). The 25-week observations confirmed all tested plants as the hosts. The repeated measures of analysis of variance (ANOVA; Tukey's HSD, α = 0.05) indicated that the average number of CMBS females differed significantly between L. limii and L. speciosa. The highest number of the females observed on L. limii was 576 ± 25 (mean ± SE) at 17 weeks after inoculation (WAI), while the highest number was 57 ± 15 on L. speciosa at 19 WAI. In addition, L. subcostata and L. speciosa had significantly high and low numbers of males, respectively, among the Lagerstroemia species. Our results suggest that L. speciosa could be incorporated in developing new cultivars with low CMBS suitability.

4.
Insects ; 11(7)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605244

ABSTRACT

Crapemyrtle bark scale (CMBS; Acanthococcus lagerstroemiae) is an exotic pest species that causes aesthetic and economic damage to crapemyrtles and poses potential threats to other horticultural crops in the United States. Although previous studies reported the infestation of CMBS on several alternative hosts across multiple families in Asia, its potential threats to other documented alternative hosts remain elusive and yet to be confirmed. In this study, feeding preference studies of CMBS were conducted on forty-nine plant species and cultivars in 2016 and 2019, in order to gain insight into the expansion of CMBS distribution in the United States, as well as other regions of the world. The infestations of CMBS were confirmed on apple (Malus domestica), Chaenomeles speciosa, Disopyros rhombifolia, Heimia salicifolia, Lagerstroemia 'Spiced Plum', M. angustifolia, and twelve out of thirty-five pomegranate cultivars. However, the levels of CMBS infestation on these test plant hosts in this study is very low compared to Lagerstroemia, and may not cause significant damage. No sign of CMBS infestation was observed on Rubus 'Arapaho', R. 'Navaho', R. idaeus 'Dorman Red', R. fruticosus, B. microphylla var. koreana × B. sempervirens, B. harlandii, or D. virginiana.

SELECTION OF CITATIONS
SEARCH DETAIL
...