Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 540, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896957

ABSTRACT

BACKGROUND: Viola philippica Cav. is the only source plant of "Zi Hua Di Ding", which is a Traditional Chinese Medicine (TCM) that is utilized as an antifebrile and detoxicant agent for the treatment of acute pyogenic infections. Historically, many Viola species with violet flowers have been misused in "Zi Hua Di Ding". Viola have been recognized as a taxonomically difficult genera due to their highly similar morphological characteristics. Here, all common V. philippica adulterants were sampled. A total of 24 complete chloroplast (cp) genomes were analyzed, among these 5 cp genome sequences were downloaded from GenBank and 19 cp genomes, including 2 "Zi Hua Di Ding" purchased from a local TCM pharmacy, were newly sequenced. RESULTS: The Viola cp genomes ranged from 156,483 bp to 158,940 bp in length. A total of 110 unique genes were annotated, including 76 protein-coding genes, 30 tRNAs, and four rRNAs. Sequence divergence analysis screening identified 16 highly diverged sequences; these could be used as markers for the identification of Viola species. The morphological, maximum likelihood and Bayesian inference trees of whole cp genome sequences and highly diverged sequences were divided into five monophyletic clades. The species in each of the five clades were identical in their positions within the morphological and cp genome tree. The shared morphological characters belonging to each clade was summarized. Interestingly, unique variable sites were found in ndhF, rpl22, and ycf1 of V. philippica, and these sites can be selected to distinguish V. philippica from samples all other Viola species, including its most closely related species. In addition, important morphological characteristics were proposed to assist the identification of V. philippica. We applied these methods to examine 2 "Zi Hua Di Ding" randomly purchased from the local TCM pharmacy, and this analysis revealed that the morphological and molecular characteristics were valid for the identification of V. philippica. CONCLUSIONS: This study provides invaluable data for the improvement of species identification and germplasm of V. philippica that may facilitate the application of a super-barcode in TCM identification and enable future studies on phylogenetic evolution and safe medical applications.


Subject(s)
Genome, Chloroplast , Viola , Bayes Theorem , Medicine, Chinese Traditional , Phylogeny , Viola/genetics
2.
Biology (Basel) ; 11(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35625439

ABSTRACT

Wood plays a vital role in human life. It is important to study the thickening mechanism of tree branches and explore the mechanism of wood formation. Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in U. pumila fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with slow-growing cultivars. A total of 9367 (up = 4363, down = 5004), 7159 (3413/3746), 7436 (3566/3870), and 5707 (2719/2988) differentially expressed genes (DEGs) were identified between fast- and slow-growing cultivars. Moreover, GO and KEGG enrichment analyses predicted that many pathways were involved in vascular development and transcriptional regulation in elm, such as "plant-type secondary cell wall biogenesis", "cell wall thickening", and "phenylpropanoid biosynthesis". NAC domain transcriptional factors (TFs) and their master regulators (VND1/MYB26), cellulose synthase catalytic subunits (CESAs) (such as IRX5/IRX3/IRX1), xylan synthesis, and secondary wall thickness (such as IRX9/IRX10/IRX8) were supposed to function in the thickening mechanism of elm branches. Our results indicated that the general phenylpropanoid pathway (such as PAL/C4H/4CL) and lignin metabolism (such as HCL/CSE/CCoAOMT/CCR/F5H) had vital functions in the growth of elm branches. Our transcriptome data were consistent with molecular results for branch thickening in elm cultivars.

3.
Mitochondrial DNA B Resour ; 7(3): 537-538, 2022.
Article in English | MEDLINE | ID: mdl-35356792

ABSTRACT

Achnatherum pekinense belongs to Poaceae. The complete chloroplast genome of A. pekinense was reported in this study. The chloroplast genome was 137,837 bp in size with a canonical quadripartite structure, including two inverted repeat regions (IR) of 21,635 bp for each, a large single-copy (LSC) region of 81,787 bp in length, and a small single-copy (SSC) region of 12,780 bp in length. The overall guanine-cytosine (GC) content of this chloroplast genome was 38.8%, and the corresponding values of the LSC, SSC, and IR regions were 36.9%, 33.1%, and 44.1%, respectively. A total of 113 unique genes were annotated in this chloroplast genome, including four rRNA genes, 31 tRNA genes, and 78 protein-coding genes. The phylogenetic analysis showed that A. pekinense was clustered with A. inebrians.

SELECTION OF CITATIONS
SEARCH DETAIL
...