Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Reprod Dev ; 89(2): 104-112, 2022 02.
Article in English | MEDLINE | ID: mdl-34888969

ABSTRACT

The glutathione S-transferase (GST) superfamily members play an important role in the male reproductive tract and sperm physiology. However, the expression profiles of some members of this protein family and their effect on sperm quality remain unclear. In this study, we found that GST kappa 1 (GSTK1) encoded protein is abundant in the testes and capacitated sperm acrosome. Western blot analysis revealed that the decreased abundance of GSTK1 was observed in low motile spermatozoa; moreover, GSTK1 expression decreased in sperm stored at 17°C under a long preservation time. In vitro analyses revealed that GSTK1 had no significant effect on sperm motility, capacitation, or acrosome reaction. Notably, after capacitated sperm were incubated with 4 and 8 µg/ml anti-GSTK1 antibodies, the fertilization rate significantly decreased in vitro fertilization assay. The current study demonstrates that GSTK1 is correlated with sperm quality and is a promising marker for the assessment of sperm quality and provides a basis for understanding the potential molecular mechanism for targeting pathogenic factors in male infertility.


Subject(s)
Sperm Capacitation , Sperm Motility , Acrosome , Acrosome Reaction/physiology , Animals , Glutathione Transferase/metabolism , Male , Sperm Capacitation/physiology , Sperm Motility/physiology , Spermatozoa/metabolism , Swine
2.
Environ Sci Pollut Res Int ; 28(41): 57459-57469, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34091845

ABSTRACT

The specific expression profile and function of circular RNAs (circRNAs) in mammalian ovarian follicles, especially during the atresia process, are unclear. In this study, we verified and explored the expression and function of circ-ANKHD1 in granulosa cells. Our results showed that abundance of circ-ANKHD1 was significantly lower in the granulosa cells than that of ANKHD1. The expression of ANKHD1 was highest in the granulosa cells from follicles with a diameter of 5-6 mm and lowest in that with a diameter of 3-4 mm. Furthermore, the expression level of circ-ANKHD1 in the ovarian tissue of 1-day-old piglets was significantly higher than that of 17-month-old multiparous sows. The luciferase reporter assay showed the potential interaction between circ-ANKHD1 and miR-27a-3p/miR-142-5p. Furthermore, circ-ANKHD1 overexpression up-regulated SFRP1 expression, while miR-27a-3p overexpression suppressed SFRP1 expression in granulosa cells. Circ-ANKHD1 overexpression significantly decreased the cell apoptotic rates of the granulosa cells and repressed the cell population at G0/G1 and S phases but increased cell population at G2/M phase. Finally, circ-ANKHD1 overexpression increased the mRNA expression levels of Bcl-2 and cyclin D1 in the granulosa cells, while there are no effects on the mRNA expression levels of caspase-3, p53, Bax, and proliferating cell nuclear antigen. In conclusion, our study for the first time identified a novel circRNA, circ-ANKHD1 that may be associated with the biological functions of granulosa cells. Circ-ANKHD1 may promote the granulosa cell proliferation, but attenuate apoptosis, and these effects may be associated with modulation of miR-27a-3p/SFRP1.


Subject(s)
MicroRNAs , Animals , Apoptosis , Female , Granulosa Cells , MicroRNAs/genetics , RNA, Circular , Signal Transduction , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...