Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Am J Cancer Res ; 13(11): 5174-5196, 2023.
Article in English | MEDLINE | ID: mdl-38058844

ABSTRACT

Ferroptosis has demonstrated significant potential in treating radiochemotherapy-resistant cancers, but its efficacy can be affected by recently discovered ferroptosis suppressors. In this study, we discovered that NR0B1 protects against erastin- or RSL3-induced ferroptosis in lung cancer cells. Transcriptomic analysis revealed that NR0B1 significantly interfered with the expression of 12 ferroptosis-related genes, and the expression level of NR0B1 positively correlated with that of c-JUN, NRF2, and CBS. We further revealed that NR0B1 suppression of ferroptosis depended on the activities of c-JUN, NRF2, and CBS. NR0B1 directly promoted the expression of NRF2 and c-JUN and indirectly upregulated CBS expression through enhancing NRF2 and/or c-JUN transcription. Moreover, we showed that NR0B1 depletion restrained xenograft tumor growth and facilitated RSL3-induced ferroptosis in the tumors. In conclusion, our findings uncover that NR0B1 suppresses ferroptosis by activating the c-JUN/NRF2-CBS signaling pathway in lung cancer cells, providing new evidence for the involvement of NR0B1 in drug resistance during cancer therapy.

3.
Huan Jing Ke Xue ; 38(9): 3970-3978, 2017 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-29965281

ABSTRACT

Adsorption ceramsite (SKC) was prepared with biochar (BC) derived from municipal sludge and kaolin (KL) based on the optimized processing parameters to adsorb ciprofloxacin (CIP) in aqueous solutions. The CIP adsorption mechanism of SKC was investigated by adsorption kinetics and isotherm adsorption models, combined with the analysis of microstructure, pore structure, phase composition, and zeta potential. Furthermore, the heavy metal leaching toxicity was assessed using the toxicity characteristic leaching procedure (TCLP) method. The results showed that SKC, with 60% BC and 40% KL calcining at 1,050℃ for 5 min, showed an outstanding removal efficiency of CIP (65.34%). The pseudo-second-order equation agreed with the adsorption behavior and the Freundlich model described the adsorption process well. The adsorption process was a multilayer adsorption controlled by physical and chemical reactions. The leaching concentration of heavy metals, trapped by the mineral phases in SKC was much lower than that in BC, indicating low ecotoxicological risk. SKC possessed the ability to adsorb CIP with its developed porosity and characteristic mineralogical phases, including silicon aluminum oxide and iron oxide. This work provides a low-cost recyclable sorbing material to remove high concentration CIP from wastewater and offers a new idea for the large-scale safe use of BC.


Subject(s)
Charcoal/chemistry , Ciprofloxacin/isolation & purification , Sewage , Water Pollutants, Chemical/isolation & purification , Adsorption , Kinetics , Metals, Heavy
SELECTION OF CITATIONS
SEARCH DETAIL
...