Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923536

ABSTRACT

BACKGROUND: Dendrobium officinale flos (DOF), a novel food raw material, is used in Chinese folk medicine to nourish the stomach. However, there is still no available study to evaluate the effects of DOF on animal models of acute gastric injury and its mechanism by modern pharmacological research. RESULTS: Herein, we characterized the major components of an aqueous extract of DOF and assessed its potential ameliorative effects in a rat model of acute gastric mucosal injury. The DOF water extract showed significant protective effects on the gastric mucosa and exhibited excellent antioxidant and anti-inflammatory activities. Acute gastric injury rat models induced by ethanol (6 mL kg-1) were pretreated with different doses of DOF water extract (50-100 mg kg-1 day-1), and the biological effects of DOF extract in gastric tissues were evaluated. DOF extract alleviated the symptoms of ethanol-stimulated acute gastric mucosal injury, as evidenced by a significant reduction in gastric injury index and the degree of gastric pathological changes. Additionally, treatment with DOF extract upregulated mucin expression in the gastric mucosa, attenuated oxidative stress, decreased the release of inflammatory mediators (TNF-α, IL-6), suppressed the expression of key proinflammatory enzymes (COX-2 and iNOS), reduced the phosphorylation of p38 MAPK and p65 NF-κB and increased the level of PGE2 in gastric tissues. CONCLUSION: DOF exerts protective effects against ethanol-induced acute gastric mucosal injury, mainly by inhibiting inflammation and oxidative stress. © 2024 Society of Chemical Industry.

2.
J Org Chem ; 89(10): 6759-6769, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38683949

ABSTRACT

Electrochemical C-H mono/multi-bromination regulation of N-sulfonylanilines on the cost-effective CF electrode is described. This reaction proceeds smoothly under mild conditions with a broad substrate scope, affording diverse mono/multi-brominated anilines in moderate to good yields. Mechanism study reveals that this transformation involves anodic oxidation, aromatic electrophilic substitution, and deprotonation. Preliminary electroactive molecule screening results in its prospective application in electroactive MBs for electrochemical biosensors.

3.
Front Public Health ; 11: 1104195, 2023.
Article in English | MEDLINE | ID: mdl-36794068

ABSTRACT

Introduction: Environmental pollutants, such as rare earth elements, affect human health and particularly induce reproductive system injury. Yttrium (Y), one of the most widely used heavy rare earth elements, has been reported the cytotoxicity. However, the biological effects of Y3+ in the human body are largely unknown. Methods: To further investigate the effects of Y on the reproductive system, in vivo (rat models) and in vitro studies were performed. Histopathological and immunohistochemical examination were conducted, and western blotting assays were performed to detect the protein expression. TUNEL/DAPI staining were used to detect cell apoptosis, and the intracellular calcium concentrations were also determined. Results: Long-term exposure to YCl3 in rats produced significant pathological changes. YCl3 treatment could induce cell apoptosis in vivo and in vitro. In addition, YCl3 enhanced the concentration of cytosolic Ca2+ and up regulated the expression of IP3R1/CaMKII axis in Leydig cells. However, inhibition of IP3R1 and CaMKII with 2-APB and KN93, respectively, could reverse these effects. Conclusion: Long-term exposure to yttrium could induce testicular injury by stimulating cell apoptosis, which might be associated with activation of Ca2+/IP3R1/CaMKII axis in Leydig cells.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Yttrium , Male , Humans , Rats , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Yttrium/toxicity , Testis/metabolism , Apoptosis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...