Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 64(8): 3524-3536, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38564295

ABSTRACT

Understanding the conformational dynamics of proteins, such as the inward-facing (IF) and outward-facing (OF) transition observed in transporters, is vital for elucidating their functional mechanisms. Despite significant advances in protein structure prediction (PSP) over the past three decades, most efforts have been focused on single-state prediction, leaving multistate or alternative conformation prediction (ACP) relatively unexplored. This discrepancy has led to the development of highly accurate PSP methods such as AlphaFold, yet their capabilities for ACP remain limited. To investigate the performance of current PSP methods in ACP, we curated a data set, named IOMemP, consisting of 32 experimentally determined high-resolution IF and OF structures of 16 membrane proteins with substantial conformational changes. We benchmarked 12 representative PSP methods, along with two recent multistate methods based on AlphaFold, against this data set. Our findings reveal a remarkably consistent preference for specific states across various PSP methods. We elucidated how coevolution information in MSAs influences state preference. Moreover, we showed that AlphaFold, when excluding coevolution information, estimated similar energies between the experimental IF and OF conformations, indicating that the energy model learned by AlphaFold is not biased toward any particular state. Our IOMemP data set and benchmark results are anticipated to advance the development of robust ACP methods.


Subject(s)
Membrane Transport Proteins , Protein Conformation , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Models, Molecular , Databases, Protein
2.
Commun Biol ; 6(1): 1098, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898666

ABSTRACT

AlphaFold is making great progress in protein structure prediction, not only for single-chain proteins but also for multi-chain protein complexes. When using AlphaFold-Multimer to predict protein‒protein complexes, we observed some unusual structures in which chains are looped around each other to form topologically intertwining links at the interface. Based on physical principles, such topological links should generally not exist in native protein complex structures unless covalent modifications of residues are involved. Although it is well known and has been well studied that protein structures may have topologically complex shapes such as knots and links, existing methods are hampered by the chain closure problem and show poor performance in identifying topologically linked structures in protein‒protein complexes. Therefore, we address the chain closure problem by using sliding windows from a local perspective and propose an algorithm to measure the topological-geometric features that can be used to identify topologically linked structures. An application of the method to AlphaFold-Multimer-predicted protein complex structures finds that approximately 1.72% of the predicted structures contain topological links. The method presented in this work will facilitate the computational study of protein‒protein interactions and help further improve the structural prediction of multi-chain protein complexes.


Subject(s)
Algorithms , Proteins , Proteins/metabolism
3.
Structure ; 30(9): 1321-1330.e5, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35700727

ABSTRACT

The solute carrier (SLC) superfamily is the largest group of proteins responsible for the transmembrane transport of substances in human cells. It includes more than 400 members that are organized into 65 families according to their physiological function and sequence similarity. Different families of SLCs can adopt the same or different folds that determine the mechanism and reflect the evolutionary relationship between SLC members. Analysis of structural data in the literature before this work showed 13 different folds in the SLC superfamily covering 40 families and 343 members. To further study their mechanism, we systematically explored the SLC superfamily to look for more folds. Based on our results, at least three new folds are found for the SLC superfamily, one of which is in the choline-like transporter family (SLC44) and has been experimentally verified. Our work has laid a foundation and provided important insights for the systematic and comprehensive study of the structure and function of SLC.


Subject(s)
Membrane Transport Proteins , Solute Carrier Proteins , Biological Transport , Humans , Membrane Transport Proteins/metabolism , Solute Carrier Proteins/metabolism
4.
Article in English | MEDLINE | ID: mdl-31180869

ABSTRACT

Ab initio protein structure prediction is one of the most challenging problems in computational biology. Multistage algorithms are widely used in ab initio protein structure prediction. The different computational costs of a multistage algorithm for different proteins are important to be considered. In this study, a population-based algorithm guided by information entropy (PAIE), which includes exploration and exploitation stages, is proposed for protein structure prediction. In PAIE, an entropy-based stage switch strategy is designed to switch from the exploration stage to the exploitation stage. Torsion angle statistical information is also deduced from the first stage and employed to enhance the exploitation in the second stage. Results indicate that an improvement in the performance of protein structure prediction in a benchmark of 30 proteins and 17 other free modeling targets in CASP.


Subject(s)
Algorithms , Computational Biology/methods , Proteins/chemistry , Entropy , Models, Molecular , Protein Conformation , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...