Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(18): 7237-7243, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37120835

ABSTRACT

DNA nanosheets (DNSs) have been utilized effectively as a fluorescence anisotropy (FA) amplifier for biosensing. But, their sensitivity needs to be further improved. Herein, CRISPR-Cas12a with strong trans-cleavage activity was utilized to enhance the FA amplification ability of DNSs for the sensitive detection of miRNA-155 (miR-155) as a proof-of-principle target. In this method, the hybrid of the recognition probe of miR-155 (T1) and a blocker sequence (T2) was immobilized on the surface of magnetic beads (MBs). In the presence of miR-155, T2 was released by a strand displacement reaction, which activated the trans-cleavage activity of CRISPR-Cas12a. The single-stranded DNA (ssDNA) probe modified with a carboxytetramethylrhodamine (TAMRA) fluorophore was cleaved in large quantities and could not bind to the handle chain on DNSs, inducing a low FA value. In contrast, in the absence of miR-155, T2 could not be released and the trans-cleavage activity of CRISPR-Cas12a could not be activated. The TAMRA-modified ssDNA probe remained intact and was complementary to the handle chain on the DNSs, and a high FA value was obtained. Thus, miR-155 was detected through the obviously decreased FA value with a low limit of detection (LOD) of 40 pM. Impressively, the sensitivity of this method was greatly improved about 322 times by CRISPR-Cas12a, confirming the amazing signal amplification ability of CRISPR-Cas12a. At the same time, the SARS-CoV-2 nucleocapsid protein was detected by the strategy successfully, indicating that this method was general. Moreover, this method has been applied in the analysis of miR-155 in human serum and the lysates of cells, which provides a new avenue for the sensitive determination of biomarkers in biochemical research and disease diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , MicroRNAs , Humans , SARS-CoV-2 , DNA , DNA, Single-Stranded , CRISPR-Cas Systems/genetics
2.
Anal Methods ; 15(12): 1500-1505, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36916642

ABSTRACT

In this study, molecularly imprinted polymers (MIPs) were assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofiber membranes for the point-of-care testing (POCT) of thiodiglycol (TDG), a sulfur mustard poisoning metabolic marker, using concentrated gold nanoparticles (AuNPs) as the signal reporting units. The MIPs/PEI/PVA nanofiber membranes could capture TDG specifically through the recognition interaction between MIPs and TDG. Then, AuNPs were adsorbed onto the MIPs/PEI/PVA nanofiber membranes through the Au-S interaction between TDG and AuNPs to produce a visible red color. In order to improve the sensitivity, the silver-enhanced solutions were used to deepen the color of the nanofiber membranes and the software Image J was used to read the gray value as the signal response for subsequent analysis. There was a good linear relationship between the color change of the MIPs/PEI/PVA nanofiber membranes and the TDG concentration from 0.1 ng mL-1 to 1.0 µg mL-1, and the limit of detection was 38 pg mL-1. This method was applied for the selective detection of TDG in urine, showing great potential for the clinical diagnosis of mustard gas poisoning.


Subject(s)
Metal Nanoparticles , Mustard Gas , Nanofibers , Molecularly Imprinted Polymers , Gold , Point-of-Care Systems , Static Electricity
3.
Anal Chim Acta ; 1154: 338319, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33736800

ABSTRACT

Protein is an excellent molecular mass amplifier without fluorescence quenching effect for fluorescence anisotropy (FA) assay. However, in traditional protein amplified FA methods, the binding ratio between amplifier and dye-modified probe is 1:1 or one target can only induce FA change of one fluorophore on probe, resulting in low sensitivity. Herein, we developed a simple FA strategy with high accuracy and sensitivity by using a crosslinked submicro-hydrogel that was formed through a catalyzed hairpin assembly (CHA) assisted protein aggregation as a novel FA amplifier. In the presence of catalyst, the CHA process was initiated through the toehold-mediated strand exchange reaction, which led to the formation of a dye and biotin-labeled Y-shaped H1-H2 duplex (YHD) and recycling of catalyst. With the introduction of streptavidin, a crosslinked submicro-hydrogel was formed by strong binding affinity between biotin on YHD and streptavidin, resulting in an increased FA of fluorescent dye. After rational design of the catalyst sequence, this method has been utilized for the detection of miRNA-145, staphylococcal enterotoxin B (SEB) and ATP with an LOD of 2.5 nM, 92 pg mL-1 and 3.6 µM, respectively. Moreover, this FA assay has been successfully applied for direct detection of target in biological samples, demonstrating its practicality in complex biological systems.


Subject(s)
Biosensing Techniques , Protein Aggregates , DNA , Fluorescence Polarization , Hydrogels , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...