Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; : e2400142, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934622

ABSTRACT

In this study, porous polymers with nitrogen heterocyclic core structures are synthesized through the condensation of enaminonitrile and terephthalaldehyde monomers. These polymers are used as a platform to store bioactive nitric oxide (NO) and control its release. NO loading is achieved by nitrosating the polymers with acidified nitrite, a process that also imparts photoresponsivity to the polymers. Polymer composition and porosity affect NO storage and release. It is observed that under UV light at 365 nm in a PBS solution, the polymers (NO@DHP-POP) can release NO in a manner fully controlled by UV lighting. Under experimental conditions, these porous polymers release NO at a rate of ≈10.0-50.0 µmol g-1 over 60 min. These findings demonstrate the potential of these polymers for integrating NO delivery into phototherapy applications.

2.
Membranes (Basel) ; 12(10)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36295731

ABSTRACT

Ammonia is an excellent medium for solar thermal chemical energy storage and can also use excess heat to produce hydrogen without carbon emission. To deepen the study of ammonia decomposition in these two fields, finite-time thermodynamics is used to model a solar-heating, co-current sweeping ammonia decomposition membrane reactor. According to the needs of energy storage systems and solar hydrogen production, five performance indicators are put forward, including the heat absorption rate (HAR), ammonia conversion rate (ACR), hydrogen production rate (HPR), entropy generation rate (EGR) and energy conversion rate (ECR). The effects of the light intensity, ammonia flow rate, nitrogen flow rate and palladium membrane radius on system performances are further analyzed. The results show that the influences of the palladium membrane radius and nitrogen flow rate on reactor performances are very slight. When the light intensity is increased from 500 W/m2 to 800 W/m2, the ACR, EGR, HAR and HPR increase obviously, but the ECR decreases by 14.2%. When the ammonia flow rate is increased by 100%, the ECR, EGR and HPR increase by more than 70%, the HAR increases by 15.6% and the ACR decreases by 12.9%. At the same time, the ammonia flow rate needs to be adjusted with the light intensity. The results can provide some guiding significance for the engineering application of ammonia solar energy storage systems and solar hydrogen production.

3.
Entropy (Basel) ; 24(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36141078

ABSTRACT

The unsteady process of the acidification of seawater by using an electrochemical acidification cell (EAC) is studied in this paper. The model of the concentration of hydrogen ions (H+) in the effluent seawater and the cell voltage of EAC varying with time and working current are built by applying the theory of finite-time thermodynamics, respectively. The semi-empirical formulas of the concentration of H+ in the effluent seawater and the cell voltage under the constant current of the Ionpure EAC are obtained, respectively, by fitting the experimental data of the Ionpure EAC. Then, the simulated data are compared with the experimental data. The total work consumption and average power consumption of the Ionpure EAC are obtained from the semi-empirical formulas. The results show that the semi-empirical formulas can simulate the operation process of the Ionpure EAC well. The validity of the models is verified. The increase of the working current will increase the total work consumption and average power consumption of the Ionpure EAC. The proper current can be selected in engineering practice to achieve different goals, such as high efficiency or low energy consumption. The obtained results can provide some guidelines for the optimal design and optimization of EAC.

4.
Membranes (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35736334

ABSTRACT

In this paper, an ammonia decomposition membrane reactor is applied to a solar heat absorption system, and thermodynamic optimization is carried out according to the usage scenarios. First, a model of an ammonia decomposition solar heat absorption system based on the membrane reactor is established by using finite time thermodynamics (FTT) theory. Then, the three-objective optimization with and the four-objective optimization without the constraint of the given heat absorption rate are carried out by using the NSGA-II algorithm. Finally, the optimized performance objectives and the corresponding design parameters are obtained by using the TOPSIS decision method. Compared with the reference system, the TOPSIS optimal solution for the three-objective optimization can reduce the entropy generation rate by 4.8% and increase the thermal efficiency and energy conversion rate by 1.5% and 1.4%, respectively. The optimal solution for the four-objective optimization can reduce the heat absorption rate, entropy generation rate, and energy conversion rate by 15.5%, 14%, and 8.7%, respectively, and improve the thermal efficiency by 15.7%. The results of this paper are useful for the theoretical study and engineering application of ammonia solar heat absorption systems based on membrane reactors.

5.
Entropy (Basel) ; 24(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35626615

ABSTRACT

In this paper, a recompression S-CO2 Brayton cycle model that considers the finite-temperature difference heat transfer between the heat source and the working fluid, irreversible compression, expansion, and other irreversibility is established. First, the ecological function is analyzed. Then the mass flow rate, pressure ratio, diversion coefficient, and the heat conductance distribution ratios (HCDRs) of four heat exchangers (HEXs) are chosen as variables to optimize cycle performance, and the problem of long optimization time is solved by building a neural network prediction model. The results show that when the mass flow rate is small, the pressure ratio, the HCDRs of heater, and high temperature regenerator are the main influencing factors of the ecological function; when the mass flow rate is large, the influences of the re-compressor, the HCDRs of low temperature regenerator, and cooler on the ecological function increase; reasonable adjustment of the HCDRs of four HEXs can make the cycle performance better, but mass flow rate plays a more important role; the ecological function can be increased by 12.13%, 31.52%, 52.2%, 93.26%, and 96.99% compared with the initial design point after one-, two-, three-, four- and five-time optimizations, respectively.

6.
Entropy (Basel) ; 24(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35052078

ABSTRACT

The exothermic reactor for ammonia synthesis is a primary device determining the performance of the energy storage system. The Braun-type ammonia synthesis reactor is used as the exothermic reactor to improve the heat release rate. Due to the entirely different usage scenarios and design objectives, its parameters need to be redesigned and optimized. Based on finite-time thermodynamics, a one-dimensional model is established to analyze the effects of inlet gas molar flow rate, hydrogen-nitrogen ratio, reactor length and inlet temperature on the total entropy generation rate and the total exothermic rate of the reactor. It's found that the total exothermic rate mainly depends on the inlet molar flow rate. Furthermore, considering the minimum total entropy generation rate and maximum total exothermic rate, the NSGA-II algorithm is applied to optimize seven reactor parameters including the inlet molar flow rate, lengths and temperatures of the three reactors. Lastly, the optimized reactor is obtained from the Pareto front using three fuzzy decision methods and deviation index. Compared with the reference reactor, the total exothermic rate of the optimized reactor is improved by 12.6% while the total entropy generation rate is reduced by 3.4%. The results in this paper can provide some guidance for the optimal design and application of exothermic reactors in practical engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...