Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sens Actuators B Chem ; 377: 133009, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36439054

ABSTRACT

Point of care (POC) diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are particularly significant for preventing transmission of coronavirus disease 2019 (COVID-19) by any user at any given time and place. CRISPR/Cas-assisted SARS-CoV-2 assays are viewed as supplemental to RT-PCR due to simple operation, convenient use and low cost. However, most current CRISPR molecular diagnostics based on fluorescence measurement increased the difficulty of POC test with need of the additional light sources. Some instrument-free visual detection with the naked eye has limitations in probe universality. Herein, we developed a universal, rapid, sensitive and specific SARS-CoV-2 POC test that combines the outstanding DNase activity of Cas12a with universal AuNPs strand-displacement probe. The oligo trigger, which is the switch the AuNPs of the strand-displacement probe, is declined as a result of Cas12a recognition and digestion. The amount of released AuNPs produced color change which can be visual with the naked eye and assessed by UV-Vis spectrometer for quantitative detection. Furthermore, a low-cost hand warmer is used as an incubator for the visual assay, enabling an instrument-free, visual SARS-CoV-2 detection within 20 min. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. After rapid virus RNA extraction and RT-PCR amplification, a minimum of 2.7 × 102 copies/mL was obtained successfully. The modular design can be applied to many nucleic acid detection applications, such as viruses, bacteria, species, etc., by simply modifying the crRNA, showing great potential in POC diagnosis.

2.
Virus Res ; 324: 199026, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36529302

ABSTRACT

As an aquatic animal of great commercial relevance, Penaeus vannamei is currently the dominant species of cultured shrimp in China and many other countries worldwide. In recent years, the outbreak of glass post-larvae disease (GPD), which accounts for more than 90% of the mortality of shrimp seedlings in serious cases, in many regions of China has caused significant losses and threatened the sustainability of the aquaculture industry and the economy. It is extremely urgent to determine the infectious agent of GPD in P. vannamei. In this work, we performed metagenomic sequencing of glass post-larvae collected from diseased prawns in Tangshan Hebei, where GPD broke out recently. An evolutionary tree was constructed by MEGA 7 to understand the evolutionary history and relationship of the pathogen genome. A novel virus in the family Marnaviridae was first identified in P. vannamei suffering from GPD, and we tentatively named this virus Baishivirus (GenBank: ON550424). The identified pathogen was validated according to Koch's rule with a pathogenic challenge assay and reverse transcription-polymerase chain reaction. There was only 8% query coverage with 64.96% identity in the Baishivirus genome when compared with its most closely related genome sequence of Wenzhou picorna-like virus 21 reported in 2016. Baishivirus genomic RNA is 9.895 kb in length and encodes three potential open reading frames (ORFs). The identification of Baishivirus in P. vannamei enriches the family Marnaviridae and potentially provides a new candidate to study and prevent GPD in the aquaculture industry.


Subject(s)
Penaeidae , RNA Viruses , Animals , Genome , Genomics , China
3.
Sens Actuators B Chem ; 373: 132746, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36212739

ABSTRACT

The CRISPR/Cas system is widely used for molecular diagnostics after the discovery of trans-cleavage activity, especially now with the COVID-19 outbreak. However, the majority of contemporary trans-cleavage activity-based CRISPR/Cas biosensors exploited standard single-strand DNA (ssDNA) reporters, which were based on the FRET principle from pioneering research. An in-depth comparison and understanding of various fluorescent readout types are essential to facilitate the outstanding analytical performance of CRISPR probes. We investigated various types of fluorescent reporters of Cas12a comprehensively. Results show that trans-cleavage of Cas12a is not limited to ssDNA and dsDNA reporters, but can be extended to molecular beacons (MB). And MB reporters can achieve superior analytical performance compared with ssDNA and ds DNA reporters at the same conditions. Accordingly, we developed a highly-sensitive SARS-CoV-2 detection with the sensitivity as low as 100 fM were successfully achieved without amplification strategy. The model target of ORF1a could robustly identify the current widespread emerging SARS-CoV-2 variants. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. And a minimum of 27 copies/mL was achieved successfully. This inspiration can also be applied to other Cas proteins with trans-cleavage activity, which provides new perspectives for simple, highly-sensitive and universal molecular diagnosis in various applications.

4.
Anal Chim Acta ; 1199: 339585, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35227385

ABSTRACT

Nucleic acid testing is the most widely used detection method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Currently, a number of COVID-19 real-time quantitative reverse transcription PCR (qPCR) kits with high sensitivity and specificity are available for SARS-CoV-2 testing. However, these qPCR assays are not always reliable in detecting low viral load samples (Ct-value ≥ 35), resulting in inconclusive or false-negative results. Here, we used a Poisson distribution to illustrate the inconsistent performance of qPCR tests in detecting low viral load samples. From this, we concluded that the false-negative outcomes resulted from the random occurrences of sampling zero target molecules in a single test, and the probability to sample zero target molecules in one test decreased significantly with increasing purified RNA or initial sample input volume. At a given RNA concentration of 0.5 copy/µL, the probability of sampling zero RNA molecules decreased from 36.79% to close to 0.67% after increasing the RNA input volume from 2 to 10 µL. A SARS-CoV-2 qPCR assay with an LOD of 300 copies/mL was used to validate the improved consistency of the qPCR tests. We found that the false-negative qPCR results of clinical COVID-19 samples with a Ct ≥ 35 decreased by 50% after increasing the input of purified RNA from 2 to 10 µL. The consistency, accuracy, and robustness of nucleic acid testing for SARS-CoV-2 samples with low viral loads can be improved by increasing the sample input volume.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Biosens Bioelectron ; 187: 113330, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34022500

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a highly contagious disease. To tame the continuously raging outbreak of COVID-19, developing a cheap, rapid and sensitive testing assay is absolutely imperative. Herein, we developed a one-tube colorimetric RT-LAMP assay for the visual detection of SARS-CoV-2 RNA. The assay integrates Si-OH magnetic beads (MBs)-based fast RNA extraction and rapid isothermal amplification in a single tube, thus bypassing the RNA elution step and directly amplifying on-beads RNA molecules with the visualized results. This one-tube assay has a limit of detection (LOD) as low as 200 copies/mL for sample input volumes of up to 600 µL, and can be performed in less than 1 h from sample collection to result readout. This assay demonstrated a 100% concordance with the gold standard test RT-qPCR test by using 29 clinical specimens and showed high specificity. This one-tube colorimetric RT-LAMP assay can serve as an alternative platform for a rapid and sensitive diagnostic test for COVID-19 and is particularly suitable for use at community clinics or township hospitals.


Subject(s)
Biosensing Techniques , COVID-19 , Colorimetry , Diagnostic Tests, Routine , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
6.
J Cancer ; 12(9): 2610-2623, 2021.
Article in English | MEDLINE | ID: mdl-33854621

ABSTRACT

Accumulating evidence has demonstrated that circular RNAs (circRNAs) are involved in the pathogenesis of cancer, including that of esophageal squamous cell carcinoma (ESCC). The current study aimed to investigate the role of hsa_circ_0000700 in ESCC. hsa_circ_0000700, miR-1229, and related functional gene expression was measured by RT-qPCR. To characterize the functions of hsa_circ_0000700 and miR-1229, ESCC cells were infected with hsa_circ_0000700-specific siRNA, miR-1229 mimics, and an inhibitor alone or in combination. Cell Counting Kit-8 (CCK8), colony formation, EdU, flow cytometry, and Transwell assays were employed to evaluate cell proliferation, apoptosis, and migration. Luciferase reporter and RNA immunoprecipitation assays were used to confirm the targeting relationship between hsa_circ_0000700 and miR-1229. Finally, a competing endogenous RNAs (ceRNA) network was built for hsa_circ_0000700, and miR-1229 targets were analyzed by bioinformatics. circ_0000700 expression was significantly upregulated in ESCC cell lines. Actinomycin D and RNase R treatment confirmed that circ_0000700 was more stable than its linear CDH9 mRNA form. Moreover, a cytoplasmic and nuclear fractionation assay suggested that circ_0000700 was mainly distributed in the cytoplasm of ECA-109 and TE-1 cells. In vitro, the proliferative and migratory capacities of ECA-109 and TE-1 cells were inhibited by knocking down circ_0000700 expression. Additionally, miR-1229 silencing reversed the circ_0000700-specific siRNA-induced attenuation of malignant phenotypes. Mechanistically, circ_0000700 was identified as a sponge of miR-1229 and could activate PRRG4, REEP5, and PSMB5 indirectly to promote ESCC progression. In summary, our results suggest that hsa_circ_0000700 functions as an oncogenic factor by sponging miR-1229 in ESCC.

7.
Quant Imaging Med Surg ; 8(9): 902-909, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30505719

ABSTRACT

BACKGROUND: Gray matter (GM) damage after radiotherapy (RT) in nasopharyngeal carcinoma (NPC) patients can result in cognitive impairment, while there may be no visible brain tissue change according to the conventional magnetic resonance imaging (MRI). This study investigated radiation-induced GM volume differences between NPC patients who received RT and those who did not. METHODS: High-resolution brain structural MRI data from two groups of patients were acquired. The pre-RT group was composed of 56 newly diagnosed but not yet medically treated NPC patients, while the after-RT group consisted of 40 NPC patients who had completed RT more than 1 year ago. Voxel-based morphometry (VBM) was applied to assess GM volumes. Two sample t-test was used to analyze GM volumes voxel-by-voxel using the VBM8 toolbox built in the SPM software. Radiation-induced cortical volume alteration in all NPC patients after RT and dosimetry of 36 patients were analyzed. RESULTS: Compared to pre-treatment group, cortical volumes of GM were significantly smaller in the left hippocampus, the right pulvinar and the right middle temporal gyrus (MTG, P<0.001, AlphaSim correction, cluster size ≥157). The mean dose (Dmean) for bilateral hippocampal heads were significantly higher than other different parts of the brain (P<0.001). No significant correlations between the GM volume in any brain regions and the mean dose of corresponding position of these brain regions were observed (P>0.05). CONCLUSIONS: Radiation to the NPC patients can not only induce damage of the hippocampus, but also other secondary damages of GM.

8.
Int J Nurs Pract ; 21 Suppl 2: 19-31, 2015 May.
Article in English | MEDLINE | ID: mdl-26125571

ABSTRACT

Hypertensive disorders of pregnancy are closely related to maternal mortality and morbidity. Calcium supplementation during pregnancy seems to reduce the risk of hypertensive disorders. No systematic review on multicentre RCTs of calcium supplementation during pregnancy has been published. The purpose of this study was to report a quantitative systematic review of the effectiveness of calcium supplementation during pregnancy on reducing the risk of hypertensive disorders of pregnancy and related problems. Publications over the years of 1991-2012 were searched through PubMed, Science Direct, EMBASE, CINAHL and Web of Science. The literatures were selected of the multicentre RCTs on calcium supplementation during pregnancy in prevention of hypertensive disorders and related problems. Reference lists from the studies were also examined for additional references. Studies were critically appraised by three independent reviewers, and the Cochrane Handbook was used to assess the quality of those included trials. Four studies were included in this systematic review. All included studies were high quality, with low risk of bias. There was an observed risk reduction in hypertension in calcium group. However, there was no reduction in the risk of severe gestational hypertension, pre-eclampsia, severe pre-eclampsia, preterm birth and low birthweight. Calcium supplementation appears to reduce the risk of hypertension in pregnancy.


Subject(s)
Calcium, Dietary/therapeutic use , Dietary Supplements , Hypertension, Pregnancy-Induced/prevention & control , Female , Humans , Multicenter Studies as Topic , Pregnancy , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...