Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Oxid Med Cell Longev ; 2021: 3010548, 2021.
Article in English | MEDLINE | ID: mdl-33505580

ABSTRACT

Ischemia-reperfusion (I/R) injury caused by acute myocardial infarction (AMI) can initiate a strong inflammatory response. Polymorphonuclear cells (PMNs) are the most important inflammatory cells. Our previous studies found that the calcium-sensing receptor (CaSR) regulates the proinflammatory effects of PMNs. However, the role and mechanism of CaSR-regulated PMNs in I/R injury remain uncertain. A rat AMI model was developed in this study and showed that the expression of CaSR on PMNs increased in AMI; however, the levels of Bcl-xl and SOD in myocardial tissue decreased, while Bax and MDA levels increased. Then, after coculture with CaSR-stimulated PMNs, the expression of Bcl-xl in cardiomyocytes significantly increased, Bax expression and the apoptotic rate decreased, and ROS production was significantly inhibited. At the same time, the cardiomyocyte damage caused by hypoxia-reoxygenation was reduced. Furthermore, we found that exosomes derived from PMNs could be taken up by cardiomyocytes. Additionally, the exosomes secreted by CaSR-stimulated PMNs had the same effect on cardiomyocytes as CaSR-stimulated PMNs, while the increased phosphorylation level of AKT in cardiomyocytes could be revered by AKT transduction pathway inhibitors. Subsequently, we identified the exosomes derived from CaSR-stimulated PMNs by second-generation sequencing technology, and increased expression of lncRNA ENSRNOT00000039868 was noted. The data show that this lncRNA can prevent the hypoxia-reoxygenation injury by upregulating the expression of PDGFD in cardiomyocytes. In vivo, exosomes from CaSR-stimulated PMNs played a significant role against AMI and reperfusion injury in myocardial tissue. Thus, we propose that exosomes derived from CaSR-stimulated PMNs can reduce I/R injury in AMI, and this effect may be related to the AKT signaling pathway.


Subject(s)
Exosomes/metabolism , Hypoxia/complications , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/cytology , Neutrophils/cytology , Receptors, Calcium-Sensing/metabolism , Animals , Animals, Newborn , Apoptosis , Cells, Cultured , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Oxygen/metabolism , Rats , Rats, Wistar , Receptors, Calcium-Sensing/genetics , Signal Transduction
2.
Mar Drugs ; 18(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352941

ABSTRACT

Fungi are a prospective resource of bioactive compounds, but conventional methods of drug discovery are not effective enough to fully explore their metabolic potential. This study aimed to develop an easily attainable method to elicit the metabolic potential of fungi using Aspergillus nidulans laeA as a transcription regulation tool. In this study, functional analysis of Aspergillus nidulans laeA (AnLaeA) and Aspergillus sp. Z5 laeA (Az5LaeA) was done in the fungus Aspergillus sp. Z5. Heterologous AnLaeA-and native Az5LaeA-overexpression exhibited similar phenotypic effects and caused an increase in production of a bioactive compound diorcinol in Aspergillus sp. Z5, which proved the conserved function of this global regulator. In particular, heteroexpression of AnLaeA showed a significant impact on the expression of velvet complex genes, diorcinol synthesis-related genes, and different transcription factors (TFs). Moreover, heteroexpression of AnLaeA influenced the whole genome gene expression of Aspergillus sp. Z5 and triggered the upregulation of many genes. Overall, these findings suggest that heteroexpression of AnLaeA in fungi serves as a simple and easy method to explore their metabolic potential. In relation to this, AnLaeA was overexpressed in the fungus Penicillium sp. LC1-4, which resulted in increased production of quinolactacin A.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Gene Expression Regulation, Fungal/physiology , Secondary Metabolism/physiology , Up-Regulation/physiology , Animals , Computational Biology/methods , Conus Snail , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Expression Profiling/methods
3.
Oxid Med Cell Longev ; 2017: 3869561, 2017.
Article in English | MEDLINE | ID: mdl-29081886

ABSTRACT

The calcium-sensing receptors (CaSRs) play an important role in many tissues and organs that are involved in inflammatory reactions. Peripheral blood polymorphonuclear neutrophils (PMNs) are important inflammatory cells. However, the expression and functions of CaSR in peripheral blood PMNs are still not reported. In this study, we collected rat peripheral blood PMNs to observe the relationship between CaSR and PMNs. From the results, we found first that the CaSR protein was expressed in PMNs, and it increased after PMNs were activated with fMLP. In addition, CaSR activator cincalcet promoted the expression of CaSR and P-p65 (NF-κB signaling pathway protein) and Bcl-xl (antiapoptosis protein), and it increased the secretion of interleukin-6 (IL-6) and myeloperoxidase (MPO); meanwhile, it decreased proapoptosis protein Bax expression and the production of IL-10 and reactive oxygen species (ROS). At the same time, cincalcet also decreased the PMN apoptosis rate analyzed by flow cytometry. However, CaSR inhibitor NPS-2143 and NF-κB signaling pathway inhibitor PDTC reverse the results cited earlier. All of these results indicated that CaSR can regulate PMN functions and status to play a role in inflammation, which is probably through the NF-κB signaling pathway.


Subject(s)
Neutrophils/metabolism , Receptors, Calcium-Sensing/metabolism , Animals , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...