Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786782

ABSTRACT

Binary transition metal oxide complexes (BTMOCs) in three-dimensional (3D) layered structures show great promise as electrodes for supercapacitors (SCs) due to their diverse oxidation states, which contribute to high specific capacitance. However, the synthesis of BTMOCs with 3D structures remains challenging yet crucial for their application. In this study, we present a novel approach utilizing a single-step hydrothermal technique to fabricate flower-shaped microspheres composed of a NiCo-based complex. Each microsphere consists of nanosheets with a mesoporous structure, enhancing the specific surface area to 23.66 m2 g-1 and facilitating efficient redox reactions. When employed as the working electrode for supercapacitors, the composite exhibits remarkable specific capacitance, achieving 888.8 F g-1 at 1 A g-1. Furthermore, it demonstrates notable electrochemical stability, retaining 52.08% capacitance after 10,000 cycles, and offers a high-power density of 225 W·kg-1, along with an energy density of 25 Wh·kg-1, showcasing its potential for energy storage applications. Additionally, an aqueous asymmetric supercapacitor (ASC) was assembled using NiCo microspheres-based complex and activated carbon (AC). Remarkably, the NiCo microspheres complex/AC configuration delivers a high specific capacitance of 250 F g-1 at 1 A g-1, with a high energy density of 88 Wh kg-1, for a power density of 800 W kg-1. The ASC also exhibits excellent long-term cyclability with 69% retention over 10,000 charge-discharge cycles. Furthermore, a series of two ASC devices demonstrated the capability to power commercial blue LEDs for a duration of at least 40 s. The simplicity of the synthesis process and the exceptional performance exhibited by the developed electrode materials hold considerable promise for applications in energy storage.

2.
Nanomicro Lett ; 16(1): 84, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214765

ABSTRACT

In this study, precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties, environmental stability, and gas-sensing performance. Utilizing a hybrid method involving high-pressure processing, stirring, and immiscible solutions, sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer. Functionalization control is achieved by defunctionalizing MXene at 650 °C under vacuum and H2 gas in a CVD furnace, followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD. Notably, the introduction of iodine, which has a larger atomic size, lower electronegativity, reduce shielding effect, and lower hydrophilicity (contact angle: 99°), profoundly affecting MXene. It improves the surface area (36.2 cm2 g-1), oxidation stability in aqueous/ambient environments (21 days/80 days), and film conductivity (749 S m-1). Additionally, it significantly enhances the gas-sensing performance, including the sensitivity (0.1119 Ω ppm-1), response (0.2% and 23% to 50 ppb and 200 ppm NO2), and response/recovery times (90/100 s). The reduced shielding effect of the -I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2. This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.

3.
Analyst ; 149(2): 386-394, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38050732

ABSTRACT

The presence of sulfamethoxazole (SMX) in natural waters has become a significant concern recently because of its detrimental effects on human health and the ecological environment. To address this issue, it is of utmost urgency to develop a reliable method that can determine SMX at ultra-low levels. In our research, we utilized PVP-induced shape control of a hydrothermal synthesis method to fabricate layer-like structured VS2, and employed it as an electrode modification material to prepare an electrochemical sensor for the sensitive determination of SMX. Thus, our prepared VS2 electrodes exhibited a linear range of 0.06-10.0 µM and a limit of detection (LOD) as low as 47.0 nM (S/N = 3) towards SMX detection. Additionally, the electrochemical sensor presented good agreement with the HPLC method, and afforded perfect recovery results (97.4-106.8%) in the practical analysis. The results validated the detection accuracy of VS2 electrodes, and demonstrated their successful applicability toward the sensitive determination of SMX in natural waters. In conclusion, this research provides a promising approach for the development of electrochemical sensors based on VS2 composite materials.


Subject(s)
Anti-Bacterial Agents , Vanadium Compounds , Humans , Sulfamethoxazole , Electrochemical Techniques/methods , Electrodes , Limit of Detection
4.
Anal Chim Acta ; 1275: 341607, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37524471

ABSTRACT

Developing a rapid, sensitive, and efficient analytical method for the trace-level determination of highly concerning antibiotic ciprofloxacin (CIP) is desirable to guarantee the safety of human health and ecosystems. In this work, a novel electrochemical aptasensor based on polyethyleneimine grafted reduced graphene oxide and titanium dioxide (rGO/PEI/TiO2) nanocomposite was constructed for ultrasensitive and selective detection of CIP. Through the in-situ electrochemical oxidation of Ti3C2Tx nanosheets, TiO2 nanosheets with good electrochemical response were prepared in a more convenient and eco-friendly method. The prepared TiO2 nanosheets promote charge transferring on electrode interface, and [Fe(CN)6]3-/4- as electrochemical active substance can be electrostatically attracted by rGO/PEI. Thus, electrochemical detection signal of the aptasensor variates a lot after specific binding with CIP, achieving working dynamic range of 0.003-10.0 µmol L-1, low detection limit down to 0.7 nmol L-1 (S/N = 3) and selectivity towards other antibiotics. Additionally, the aptasensor exhibited good agreement with HPLC method at 95% confidence level, and achieved good recoveries (96.8-106.3%) in real water samples, demonstrating its suitable applicability of trace detection of CIP in aquatic environment.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Humans , Polyethyleneimine , Ciprofloxacin , Ecosystem , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Graphite/chemistry , Titanium/chemistry , Anti-Bacterial Agents , Electrochemical Techniques/methods , Limit of Detection
5.
Nanoscale ; 15(18): 8181-8188, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37078095

ABSTRACT

Metal-organic framework (MOF)-derived metal oxide semiconductors have recently received extensive attention in gas sensing applications due to their high porosity and three-dimensional architecture. Still, challenges remain for MOF-derived materials, including low-cost and facile synthetic methods, rational nanostructure design, and superior gas-sensing performances. Herein, a series of Fe-MIL-88B-derived trimetallic FeCoNi oxides (FCN-MOS) with a mesoporous structure were synthesized by a one-step hydrothermal reaction followed by calcination. The FCN-MOS system consists of three main phases: α-Fe2O3 (n-type), CoFe2O4, and NiFe2O4 (p-type), and the nanostructure and pore size can be controlled by altering the content of α-Fe2O3, CoFe2O4, and NiFe2O4. The sensors based on FCN-MOS exhibit a high response of 71.9, a good selectivity towards 100 ppm ethanol at 250 °C, and long-term stability up to 60 days. Additionally, the FCN-MOS-based sensors show a p-n transition gas sensing behavior with the alteration of the Fe/Co/Ni ratio.

6.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499352

ABSTRACT

Three-dimensional (3D) hierarchical microspheres of Bi12O17Cl2 (BOC) were prepared via a facile solvothermal method using a binary solvent for the photocatalytic degradation of Rhodamine-B (RhB) and Bisphenol-A (BPA). Co3O4 nanoparticles (NPs)-decorated BOC (Co3O4/BOC) heterostructures were synthesized to further enhance their photocatalytic performance. The microstructural, morphological, and compositional characterization showed that the BOC microspheres are composed of thin (~20 nm thick) nanosheets with a 3D hierarchical morphology and a high surface area. Compared to the pure BOC photocatalyst, the 20-Co3O4/BOC heterostructure showed enhanced degradation efficiency of RhB (97.4%) and BPA (88.4%). The radical trapping experiments confirmed that superoxide (•O2-) radicals played a primary role in the photocatalytic degradation of RhB and BPA. The enhanced photocatalytic performances of the hierarchical Co3O4/BOC heterostructure are attributable to the synergetic effects of the highly specific surface area, the extension of light absorption to the more visible light region, and the suppression of photoexcited electron-hole recombination. Our developed nanocomposites are beneficial for the construction of other bismuth-based compounds and their heterostructure for use in high-performance photocatalytic applications.


Subject(s)
Benzhydryl Compounds , Phenols , Rhodamines
7.
BMC Plant Biol ; 22(1): 541, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36418942

ABSTRACT

BACKGROUND: Pine wilt disease (PWD) is a destructive disease that endangers pine trees, resulting in the wilting, with yellowing and browning of the needles, and eventually the death of the trees. Previous studies showed that the Avr9/Cf-9 rapidly elicited (PmACRE1) gene was downregulated by Bursaphelenchus xylophilus infection, suggesting a correlation between PmACRE1 expression and pine tolerance. Here, we used the expression of PmACRE1 in Arabidopsis thaliana to evaluate the role of PmACRE1 in the regulation of host defence against B. xylophilus infection. RESULTS: Our results showed that the transformation of PmACRE1 into A. thaliana enhanced plant resistance to the pine wood nematode (PWN); that is, the leaves of the transgenic line remained healthy for a longer period than those of the blank vector group. Ascorbate peroxidase (APX) activity and total phenolic acid and total flavonoid contents were higher in the transgenic line than in the control line. Widely targeted metabolomics analysis of the global secondary metabolites in the transgenic line and the vector control line showed that the contents of 30 compounds were significantly different between these two lines; specifically, the levels of crotaline, neohesperidin, nobiletin, vestitol, and 11 other compounds were significantly increased in the transgenic line. The studies also showed that the ACRE1 protein interacted with serine hydroxymethyltransferase, catalase domain-containing protein, myrosinase, dihydrolipoyl dehydrogenase, ketol-acid reductoisomerase, geranylgeranyl diphosphate reductase, S-adenosylmethionine synthase, glutamine synthetase, and others to comprehensively regulate plant resistance. CONCLUSIONS: Taken together, these results indicate that PmACRE1 has a potential role in the regulation of plant defence against PWNs.


Subject(s)
Arabidopsis , Pinus , Arabidopsis/genetics , Xylophilus , Plant Leaves , Glycine Hydroxymethyltransferase , Glutamate-Ammonia Ligase
8.
Mikrochim Acta ; 189(9): 364, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36045180

ABSTRACT

3D straw-sheaf-like cobalt oxide (SS-Co3O4) was prepared via the hydrothermal method and inert gas calcination of precursors without the assistance of any template or surfactant. It was composed of numerous nanoneedles with a length of ~ 8 µm and a diameter of ~ 30 nm strongly tied in the center. The SS-Co3O4 exhibited high crystallinity, a large surface area (39.01 m2.g-1), a smaller pore size (6 nm), and lower charge transfer resistance (Rct = 9.35 Ω) at the electrode/electrolyte interface. A non-enzymatic glucose oxidizing electrode fabricated with SS-Co3O4 showed a high sensitivity (669 µA.mM-1.cm-2), wide linear range (0.04-4.85 mM), low limit of detection (0.31 µM), good selectivity, fast response time (5 s), and high reproducibility with a relative standard deviation of 2.25%. In addition, its robust structure demonstrated excellent electrochemical stability by retaining 83.8% of the initial sensitivity when its current density vs. time response was measured for 75 min in bare electrolytes prior to the glucose-sensing test. Furthermore, it demonstrated excellent repeatability performance by retaining 87.0% of the initial sensitivity when a single electrode was tested for 4 cycles. The proposed robust structured 3D SS-Co3O4 electrode successfully responds to the content of glucose in human saliva, which substantially proves its suitability in practical application. The synthesis technique is advantageous to prepare other metal oxides with interesting morphology and robust structure for the development of more reliable non-enzymatic glucometers and other electrochemical devices.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Cobalt , Electrodes , Glucose/chemistry , Humans , Oxides , Reproducibility of Results
9.
Phys Chem Chem Phys ; 22(34): 19202-19212, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32812593

ABSTRACT

Large Schottky barrier at the electric contact interface drastically hinders the performance of two-dimensional (2D) semiconductor devices, because of which it is crucial to develop better methods to achieve the ohmic contact. Recently, a new field effect transistor (FET) device was constructed by the popular 2D channel material MoS2 and an electrode material borophene was detected theoretically, but the large Schottky barrier still existed. Hence, we used surface functional groups modification on the borophene surface to regulate this Schottky barrier, based on ab initio electronic structure calculations and quantum transport simulations. Our study shows that this method makes it possible to obtain tunable metal work functions in a wide range, and the ohmic contact can still be realized. Although van der Waals (vdW) contacts were observed at all the interfaces between the 2D borophene-based metals and the monolayer MoS2, the Fermi level pinning (FLP) effect was still obvious, and existed in our proposed system with the ohmic contact. Moreover, we also discuss the origin of the FLP with varying degrees. It was found that the interface dipole and metal-induced gap states (MIGS) would be responsible for the FLP of vertical and lateral directions, respectively. More precisely, we find that the size of MIGS is dependent on the relative orientation between the functional group and metal-MoS2 interface. This work not only suggests that surface functional group modification is effective in forming ohmic contact with MoS2, but also holds some implication in the fundamental research on metal-semiconductor contacts with the vdW type.

10.
Nanomaterials (Basel) ; 9(12)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817223

ABSTRACT

In this study, AlO(OH) (boehmite) film was deposited onto a surface acoustic wave (SAW) resonator using a combined sol-gel and spin-coating technology, and prepared and used as a sensitive layer for a high-performance ammonia sensor. The prepared AlO(OH) film has a mesoporous structure and a good affinity to NH3 (ammonia gas) molecules, and thus can selectively adsorb and react with NH3. When exposed to ammonia gases, the SAW sensor shows an initial positive response of the frequency shift, and then a slight decrease of the frequency responses. The sensing mechanism of the NH3 sensor is based on the competition between mass-loading and elastic-loading effects. The sensor operated at room temperature shows a positive response of 1540 Hz to 10 ppm NH3, with excellent sensitivity, selectivity and stability.

11.
ACS Appl Mater Interfaces ; 11(5): 5298-5305, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30640427

ABSTRACT

The core/shell micro-/nanostructures with versatility, tunability, stability, dispersibility, and biocompatibility are widely applied in optics, biomedicine, catalysis, and energy. Organic micro-/nanocrystals have significant applications in miniaturized optoelectronics because of their controllable self-assembly behavior, tunable optical properties, and tailor-made molecular structure. Nevertheless, the advanced organic core/shell micro-/nanostructures, which possess multifunctionality, flexibility, and higher compatibility, are rarely demonstrated because of the dynamic nature of molecular self-assembly and the complex epitaxial relationship of material combination. Herein, we demonstrate the one-dimensional organic core/shell micro-/nanostructures with component interchange, which originates from the 4,4'-((1 E,1' E)-(2,5-dimethoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (DPEpe) single-crystal microrods or the DPEpe-HCl single-crystal microrods after a reversible protonation or deprotonation process. Notably, the DPEpe/DPEpe-HCl core/shell microrods display vivid visualizations of tunable emission color via an efficient energy-transfer process during the stepwise formation of a shell layer. More significantly, these DPEpe/DPEpe-HCl and DPEpe-HCl/DPEpe core/shell microrods cooperatively demonstrate the multicolor optical waveguide properties continuously adjusted from green [CIE (0.326, 0.570)], to yellow [CIE (0.516, 0.465)], and to red [CIE (0.614, 0.374)]. Our investigation provides a new strategy to fabricate the organic core/shell micro-/nanostructures, which can eventually contribute to the advanced organic optoelectronics at the micro-/nanoscale.

12.
Data Brief ; 3: 24-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26217712

ABSTRACT

Cylindrocladium leaf blight is one of the most important diseases in Eucalyptus plantations. We investigated the proteome and transcriptome of Eucalyptus infected or not infected with Calonectria pseudoreteaudii. Here we provide the information about the processing of raw data obtained by RNA-seq and iTRAQ technologies. The data are related to [1].

13.
J Proteomics ; 115: 117-31, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25540935

ABSTRACT

Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. BIOLOGICAL SIGNIFICANCE: In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp.


Subject(s)
Ascomycota/metabolism , Eucalyptus/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Proteome/biosynthesis , Transcriptome , Plant Leaves/microbiology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...