Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 24(1): 46, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35172878

ABSTRACT

BACKGROUND: Treatment goals for patients with systemic lupus erythematosus (SLE) include minimising disease activity and reducing the risk of flares. Although belimumab is effective at reducing disease activity and risk of severe flares, it was previously unknown what the clinical effects were upon treatment discontinuation. The objective of this study was to assess the impact of temporary withdrawal of intravenous (IV) belimumab in patients with SLE. METHODS: This multicentre, open-label, non-randomised, 52-week study (GSK Study BEL116027; NCT02119156) recruited patients with SLE and stable low disease activity, of whom those on belimumab 10 mg/kg IV plus standard therapy either discontinued belimumab for 24 weeks and then restarted belimumab 10 mg/kg IV every 4 weeks (q4w) for 28 weeks (treatment holiday [TH] group), or continued on belimumab 10 mg/kg IV plus standard therapy q4w for 52 weeks (treatment continuation [TC] group). The primary endpoint was median time to first Safety of Estrogens in Lupus Erythematosus National Assessment-SLE Disease Activity Index (SELENA-SLEDAI) Flare Index flare. Secondary and other endpoints included rate of any flare, time to severe flare, time to renal flare and rebound (SELENA-SLEDAI score exceeding parent study baseline). Data on rebound phenomenon in patients with any disease level of SLE who had permanently withdrawn from further belimumab treatment (long-term discontinuation group [LTD]) were also assessed. Safety was assessed. RESULTS: The primary endpoint was not evaluable in the TH (n = 12) and TC (n = 29) groups as fewer than half of patients flared. Unadjusted flare rates per patient-year were 1.0 during treatment discontinuation and 0.3 during treatment restart (0.6 overall) in the TH group and 0.6 in the TC group; there were no severe or renal flares. No TH patients rebounded; 2 (6.9%) TC patients rebounded; 2 (5.1%) patients in the LTD group rebounded. There were no new safety signals. CONCLUSIONS: Twenty-four-week belimumab discontinuation did not appear to increase the risk of flares or rebound in patients with low SLE disease activity; flare rates were low in both groups. Further studies may help to fully determine the effect of belimumab discontinuation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02119156 . Registered on April 21, 2014.


Subject(s)
Antibodies, Monoclonal, Humanized , Lupus Erythematosus, Systemic , Antibodies, Monoclonal, Humanized/therapeutic use , Humans , Immunosuppressive Agents/adverse effects , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/drug therapy , Severity of Illness Index , Treatment Outcome
2.
J Cell Sci ; 132(24)2019 12 13.
Article in English | MEDLINE | ID: mdl-31780580

ABSTRACT

Cells are internally organized into compartmentalized organelles that execute specialized functions. To understand the functions of individual organelles and their regulations, it is critical to resolve the compositions of individual organelles, which relies on a rapid and efficient isolation method for specific organellar populations. Here, we introduce a robust affinity purification method for rapid isolation of intracellular organelles (e.g. lysosomes, mitochondria and peroxisomes) by taking advantage of the extraordinarily high affinity between the twin strep tag and streptavidin variants. With this method, we can isolate desired organelles with high purity and yield in 3 min from the post-nuclear supernatant of mammalian cells or less than 8 min for the whole purification process. Using lysosomes as an example, we show that the rapid procedure is especially useful for studying transient and fast cellular activities, such as organelle-initiated signaling and organellar contents of small-molecular metabolites. Therefore, our method offers a powerful tool to dissect spatiotemporal regulation and functions of intracellular organelles.


Subject(s)
Chromatography, Affinity/methods , Organelles/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/metabolism , Peroxisomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...