Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008811

ABSTRACT

Fully understanding the anisotropic effect of silicon surface orientations in local anodic oxidation (LAO) nanolithography processes is critical to the precise control of oxide quality and rate. This study used ReaxFF MD simulations to reveal the surface anisotropic effects in the LAO through the analysis of adsorbed species, atomic charge, and oxide growth. Our results show that the LAO behaves differently on silicon (100), (110), and (111) surfaces. Specifically, the application of an electric field significantly increases the quantity of surface-adsorbed -OH2 while reducing -OH on the (111) surface, and results in a higher charge on a greater number of Si atoms on the (100) surface. Moreover, the quantity of surface-adsorbed -OH plays a pivotal role in influencing the oxidation rate, as it directly correlates with an increased formation rate of Si-O-Si bonds. During bias-induced oxidation, the (111) surface appears with a high initial oxidation rate among three surfaces, while the (110) surface underwent increased oxidation at higher electric field strengths. This conclusion is based on the analysis of the evolution of Si-O-Si bond number, surface elevation, and oxide thickness. Our findings align well with prior theoretical and experimental studies, providing deeper insights and clear guidance for the fabrication of high-performance nanoinsulator gates using LAO nanolithography.

2.
Langmuir ; 38(16): 4894-4905, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35421315

ABSTRACT

Surface-enhanced Raman scattering (SERS) has attracted attention because of its enormous potential to detect molecules with low concentrations. The method of fabricating SERS substrates is of great importance for improving the detection resolution. However, SERS substrates with different triangular pyramid tips fabricated by using the tip-based nanoindentation method has not been reported. Here, we prepared arrayed micro/nanocavities on copper-based graphene using the continuous indentation method with a Berkovich tip and a cube-corner tip, which have different face angles. Gold nanoparticles were then sputtered onto the graphene-copper micro/nanocavities to form the Au@GR@Cu micro/nanocavities SERS substrates. The substrates formed using the Berkovich tip and cube-corner tip were labeled B2-B9 and C2-C9, respectively, in which the numbers indicate the machining feed. Rhodamine 6G (R6G) was employed, and the Raman intensities of R6G on the differently arrayed Au@GR@Cu micro/nanocavities were measured. The Raman intensities of R6G were stronger on the pile-ups than on the inverted triangular pyramid cavities. The Raman intensities of R6G were highest on the C2 and B2 structures and lowest on the C9 and B9 structures. The Raman intensities of R6G on the arrayed Au@GR@Cu micro/nanocavities fabricated by the cube-corner tip were stronger than those on the arrayed Au@GR@Cu micro/nanocavities fabricated using the Berkovich tip with the same machining feed. In addition, the electric field intensity and distribution of the B9 and C9 arrayed Au@GR@Cu were simulated using Comsol software. Au@GR@Cu structures fabricated by the cube-corner tip were generated with higher electric field intensities. Furthermore, the relative standard deviations at 1362 cm-1 of R6G were 6.19 and 6.62% on the C2 and C4 surfaces, respectively, showing good homogeneity. The SERS spectra of 10-9 mol/L malachite green solution and 10-6 mol/L carbaryl solution were recognized on the C1, C2, and C4 surfaces on day 1 and after 3 months, respectively. After storage at room temperature for 3 months, the reductions in the Raman intensities were less than 10%, indicating excellent stability. The results showed that the arrayed Au@GR@Cu micro/nanocavities fabricated using the cube-corner tip performed better than those fabricated using the Berkovich tip and exhibited excellent uniformity, availability, and stability, providing great potential for detecting pesticides at low concentrations.

3.
Nanoscale Res Lett ; 14(1): 370, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31811570

ABSTRACT

The ultimate objective of mechanical cutting is to down minimum chip thickness to single atomic layer. In this study, the cutting-based single atomic layer removal mechanism on monocrystalline copper is investigated by a series of molecular dynamics analysis. The research findings report that when cutting depth decreases to atomic scale, minimum chip thickness could be down to single atomic layer by mechanical cutting using rounded edge tool. The material removal behaviour during cutting-based single atomic layer removal exhibits four characteristics, including chip formation by shearing-stress driven dislocation motion, elastic deformation on the processed surface, atomic sizing effect, and cutting-edge radius effect. Based on this understanding, a new cutting model is proposed to study the material removal behaviour in cutting-based single atomic layer removal process, significantly different from those for nanocutting and conventional cutting. The outcomes provide theoretical support for the research and development of the atomic and close-to-atomic scale manufacturing technology.

4.
Nanoscale Res Lett ; 10(1): 396, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26452371

ABSTRACT

Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...