Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
J Phys Chem B ; 127(27): 6006-6014, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37368753

ABSTRACT

Single-cell proteomics has attracted a lot of attention in recent years because it offers more functional relevance than single-cell transcriptomics. However, most work to date has focused on cell typing, which has been widely accomplished by single-cell transcriptomics. Here we report the use of single-cell proteomics to measure the correlation between the translational levels of a pair of proteins in a single mammalian cell. In measuring pairwise correlations among ∼1000 proteins in a population of homogeneous K562 cells under a steady-state condition, we observed multiple correlated protein modules (CPMs), each containing a group of highly positively correlated proteins that are functionally interacting and collectively involved in certain biological functions, such as protein synthesis and oxidative phosphorylation. Some CPMs are shared across different cell types while others are cell-type specific. Widely studied in omics analyses, pairwise correlations are often measured by introducing perturbations into bulk samples. However, some correlations of gene or protein expression under the steady-state condition would be masked by perturbation. The single-cell correlations probed in our experiment reflect intrinsic steady-state fluctuations in the absence of perturbation. We note that observed correlations between proteins are experimentally more distinct and functionally more relevant than those between corresponding mRNAs measured in single-cell transcriptomics. By virtue of single-cell proteomics, functional coordination of proteins is manifested through CPMs.


Subject(s)
Proteins , Proteomics , Animals , Gene Expression Profiling , Mammals
2.
Proc Natl Acad Sci U S A ; 119(40): e2206450119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161934

ABSTRACT

Recent advances in single-cell assay for transposase accessible chromatin using sequencing (scATAC-seq) and its coassays have transformed the field of single-cell epigenomics and transcriptomics. However, the low detection efficiency of current methods has limited our understanding of the true complexity of chromatin accessibility and its relationship with gene expression in single cells. Here, we report a high-sensitivity scATAC-seq method, termed multiplexed end-tagging amplification of transposase accessible chromatin (METATAC), which detects a large number of accessible sites per cell and is compatible with automation. Our high detectability and statistical framework allowed precise linking of enhancers to promoters without merging single cells. We systematically investigated allele-specific accessibility in the mouse cerebral cortex, revealing allele-specific accessibility of promotors of certain imprinted genes but biallelic accessibility of their enhancers. Finally, we combined METATAC with our high-sensitivity single-cell RNA sequencing (scRNA-seq) method, multiple annealing and looping based amplification cycles for digital transcriptomics (MALBAC-DT), to develop a joint ATAC-RNA assay, termed METATAC and MALBAC-DT coassay by sequencing (M2C-seq). M2C-seq achieved significant improvements for both ATAC and RNA compared with previous methods, with consistent performance across cell lines and early mouse embryos.


Subject(s)
Chromatin , Transposases , Animals , Chromatin/genetics , Mice , RNA , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , Transcriptome , Transposases/genetics , Transposases/metabolism
3.
Proc Natl Acad Sci U S A ; 119(17): e2117938119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35452314

ABSTRACT

Cell mass and chemical composition are important aggregate cellular properties that are especially relevant to physiological processes, such as growth control and tissue homeostasis. Despite their importance, it has been difficult to measure these features quantitatively at the individual cell level in intact tissue. Here, we introduce normalized Raman imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that provides the local concentrations of protein, lipid, and water from live or fixed tissue samples with high spatial resolution. Using NoRI, we demonstrate that protein, lipid, and water concentrations at the single cell are maintained in a tight range in cells under the same physiological conditions and are altered in different physiological states, such as cell cycle stages, attachment to substrates of different stiffness, or by entering senescence. In animal tissues, protein and lipid concentration varies with cell types, yet an unexpected cell-to-cell heterogeneity was found in cerebellar Purkinje cells. The protein and lipid concentration profile provides means to quantitatively compare disease-related pathology, as demonstrated using models of Alzheimer's disease. This demonstration shows that NoRI is a broadly applicable technique for probing the biological regulation of protein mass, lipid mass, and water mass for studies of cellular and tissue growth, homeostasis, and disease.


Subject(s)
Nonlinear Optical Microscopy , Spectrum Analysis, Raman , Lipid Metabolism , Lipids , Microscopy/methods , Proteins , Spectrum Analysis, Raman/methods
4.
Nat Commun ; 12(1): 3798, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145235

ABSTRACT

Olfactory sensory neurons (OSNs) are functionally defined by their expression of a unique odorant receptor (OR). Mechanisms underlying singular OR expression are well studied, and involve a massive cross-chromosomal enhancer interaction network. Trace amine-associated receptors (TAARs) form a distinct family of olfactory receptors, and here we find that mechanisms regulating Taar gene choice display many unique features. The epigenetic signature of Taar genes in TAAR OSNs is different from that in OR OSNs. We further identify that two TAAR enhancers conserved across placental mammals are absolutely required for expression of the entire Taar gene repertoire. Deletion of either enhancer dramatically decreases the expression probabilities of different Taar genes, while deletion of both enhancers completely eliminates the TAAR OSN populations. In addition, both of the enhancers are sufficient to drive transgene expression in the partially overlapped TAAR OSNs. We also show that the TAAR enhancers operate in cis to regulate Taar gene expression. Our findings reveal a coordinated control of Taar gene choice in OSNs by two remote enhancers, and provide an excellent model to study molecular mechanisms underlying formation of an olfactory subsystem.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Olfactory Receptor Neurons/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Odorant/metabolism , Animals , Animals, Genetically Modified , Female , Male , Mice , Mice, Inbred C57BL , Olfactory Mucosa/metabolism , Optical Imaging , Receptors, G-Protein-Coupled/metabolism , Smell/genetics , Zebrafish/genetics
5.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593904

ABSTRACT

Single-nucleotide variants (SNVs), pertinent to aging and disease, occur sporadically in the human genome, hence necessitating single-cell measurements. However, detection of single-cell SNVs suffers from false positives (FPs) due to intracellular single-stranded DNA damage and the process of whole-genome amplification (WGA). Here, we report a single-cell WGA method termed multiplexed end-tagging amplification of complementary strands (META-CS), which eliminates nearly all FPs by virtue of DNA complementarity, and achieved the highest accuracy thus far. We validated META-CS by sequencing kindred cells and human sperm, and applied it to other human tissues. Investigation of mature single human neurons revealed increasing SNVs with age and potentially unrepaired strand-specific oxidative guanine damage. We determined SNV frequencies along the genome in differentiated single human blood cells, and identified cell type-dependent mutational patterns for major types of lymphocytes.


Subject(s)
DNA Copy Number Variations , Leukocytes, Mononuclear/cytology , Neurons/cytology , Single-Cell Analysis/methods , Spermatozoa/cytology , Adult , Aged , Female , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Humans , Leukocytes, Mononuclear/physiology , Male , Mutation , Neurons/physiology , Nucleic Acid Amplification Techniques/methods , Reproducibility of Results
6.
Cell ; 184(3): 741-758.e17, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33484631

ABSTRACT

Both transcription and three-dimensional (3D) architecture of the mammalian genome play critical roles in neurodevelopment and its disorders. However, 3D genome structures of single brain cells have not been solved; little is known about the dynamics of single-cell transcriptome and 3D genome after birth. Here, we generated a transcriptome (3,517 cells) and 3D genome (3,646 cells) atlas of the developing mouse cortex and hippocampus by using our high-resolution multiple annealing and looping-based amplification cycles for digital transcriptomics (MALBAC-DT) and diploid chromatin conformation capture (Dip-C) methods and developing multi-omic analysis pipelines. In adults, 3D genome "structure types" delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first post-natal month. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, we examine allele-specific structure of imprinted genes, revealing local and chromosome (chr)-wide differences. These findings uncover an unknown dimension of neurodevelopment.


Subject(s)
Brain/growth & development , Genome , Sensation/genetics , Transcription, Genetic , Alleles , Animals , Animals, Newborn , Cell Lineage/genetics , Chromatin/metabolism , Gene Expression Regulation, Developmental , Gene Ontology , Gene Regulatory Networks , Genetic Loci , Genomic Imprinting , Mice , Multigene Family , Neuroglia/metabolism , Neurons/metabolism , Transcriptome/genetics , Visual Cortex/metabolism
7.
Mol Cell ; 80(6): 1123-1134.e4, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33290743

ABSTRACT

Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for understanding viral spread and evolution as well as for vaccine development. Existing RNA sequencing methods are demanding on user technique and time and, thus, not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We developed a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. We demonstrate the utility of our approach on pharyngeal, sputum, and stool samples collected from coronavirus disease 2019 (COVID-19) patients, successfully obtaining whole metatranscriptomes and complete high-depth, high-coverage SARS-CoV-2 genomes with high yield and robustness. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate molecular epidemiology studies during current and future outbreaks.


Subject(s)
COVID-19/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing , Animals , Humans , Mice , NIH 3T3 Cells , RNA, Viral/metabolism , SARS-CoV-2/metabolism
8.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32970990

ABSTRACT

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Cryoelectron Microscopy , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Female , Lung/pathology , Male , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
9.
Cell ; 182(1): 73-84.e16, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32425270

ABSTRACT

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 Å cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , B-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Single-Cell Analysis , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , COVID-19 , Convalescence , High-Throughput Nucleotide Sequencing , Humans , Mice , Pandemics , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , VDJ Exons
10.
Proc Natl Acad Sci U S A ; 117(6): 2886-2893, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31988135

ABSTRACT

Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods.


Subject(s)
DNA/genetics , RNA/genetics , Sequence Analysis, RNA/methods , Chimera/genetics , DNA, Complementary/genetics , Gene Library , HEK293 Cells , HeLa Cells , Humans , Single-Cell Analysis , Transposases/metabolism
12.
Nat Struct Mol Biol ; 26(4): 297-307, 2019 04.
Article in English | MEDLINE | ID: mdl-30936528

ABSTRACT

Sensory neurons in the mouse eye and nose have unusual chromatin organization. Here we report their three-dimensional (3D) genome structure at 20-kilobase (kb) resolution, achieved by applying our recently developed diploid chromatin conformation capture (Dip-C) method to 409 single cells from the retina and the main olfactory epithelium of adult and newborn mice. The 3D genome of rod photoreceptors exhibited inverted radial distribution of euchromatin and heterochromatin compared with that of other cell types, whose nuclear periphery is mainly heterochromatin. Such genome-wide inversion is not observed in olfactory sensory neurons (OSNs). However, OSNs exhibited an interior bias for olfactory receptor (OR) genes and enhancers, in clear contrast to non-neuronal cells. Each OSN harbored multiple aggregates of OR genes and enhancers from different chromosomes. We also observed structural heterogeneity of the protocadherin gene cluster. This type of genome organization may provide the structural basis of the 'one-neuron, one-receptor' rule of olfaction.


Subject(s)
Olfactory Receptor Neurons/metabolism , Animals , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Phospholipids/metabolism , Principal Component Analysis , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Schizosaccharomyces/metabolism , Sensory Receptor Cells/metabolism
13.
Cancer Res ; 79(1): 7-20, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30389703

ABSTRACT

Osteosarcoma is the most common primary bone malignancy, and the lung is the most frequent site of metastasis. The limited understanding of the tumoral heterogeneity and evolutionary process of genomic alterations in pulmonary metastatic osteosarcoma impedes development of novel therapeutic strategies. Here we systematically illustrate the genomic disparities between primary tumors and corresponding pulmonary metastatic tumors by multiregional whole-exome and whole-genome sequencing in 86 tumor regions from 10 patients with osteosarcoma. Metastatic tumors exhibited a significantly higher mutational burden and genomic instability compared with primary tumors, possibly due to accumulation of mutations caused by a greater number of alterations in DNA damage response genes in metastatic tumors. Integrated analysis of the architecture and relationships of subclones revealed a dynamic mutational process and diverse dissemination patterns of osteosarcoma during pulmonary metastasis (6/10 with linear and 4/10 with parallel evolutionary patterns). All patients demonstrated more significant intertumoral rather than intratumoral heterogeneity between primary tumors and metastatic tumors. Mutated genes were enriched in the PI3K-Akt pathway at both the early and late stages of tumor evolution and in the MAPK pathway at the metastatic stage. Conversely, metastatic tumors showed improved immunogenicity, including higher neoantigen load, elevated PD-L1 expression, and tumor-infiltrating lymphocytes than the corresponding primary tumors. Our study is the first to report the dynamic evolutionary process and temporospatial tumor heterogeneity of pulmonary metastatic osteosarcoma, providing new insights for diagnosis and potential therapeutic strategies for pulmonary metastasis. SIGNIFICANCE: High-throughput sequencing of primary and metastatic osteosarcoma provides new insights into the diagnosis of and potential clinical therapeutic strategies for pulmonary metastasis.


Subject(s)
Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Evolution, Molecular , Exome Sequencing/methods , Lung Neoplasms/genetics , Mutation , Osteosarcoma/genetics , Bone Neoplasms/pathology , Cohort Studies , Exome , High-Throughput Nucleotide Sequencing/methods , Humans , Lung Neoplasms/secondary , Osteosarcoma/pathology
14.
Sci Adv ; 4(11): eaat7715, 2018 11.
Article in English | MEDLINE | ID: mdl-30456301

ABSTRACT

One of the key pathological features of Alzheimer's disease (AD) is the existence of extracellular deposition of amyloid plaques formed with misfolded amyloid-ß (Aß). The conformational change of proteins leads to enriched contents of ß sheets, resulting in remarkable changes of vibrational spectra, especially the spectral shifts of the amide I mode. Here, we applied stimulated Raman scattering (SRS) microscopy to image amyloid plaques in the brain tissue of an AD mouse model. We have demonstrated the capability of SRS microscopy as a rapid, label-free imaging modality to differentiate misfolded from normal proteins based on the blue shift (~10 cm-1) of amide I SRS spectra. Furthermore, SRS imaging of Aß plaques was verified by antibody staining of frozen thin sections and fluorescence imaging of fresh tissues. Our method may provide a new approach for studies of AD pathology, as well as other neurodegenerative diseases associated with protein misfolding.


Subject(s)
Alzheimer Disease/pathology , Disease Models, Animal , Nonlinear Optical Microscopy/methods , Plaque, Amyloid/pathology , Alzheimer Disease/diagnostic imaging , Amyloid beta-Protein Precursor/genetics , Animals , Humans , Mice , Mice, Transgenic , Plaque, Amyloid/diagnostic imaging , Presenilins/genetics
15.
Nat Commun ; 9(1): 4904, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464169

ABSTRACT

Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Erlotinib Hydrochloride/pharmacokinetics , Glioblastoma/drug therapy , Animals , Antineoplastic Agents/administration & dosage , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/administration & dosage , Female , Magnetic Resonance Imaging , Mice, Nude , Neoplasm Transplantation , Protein-Tyrosine Kinases/metabolism , Sequence Analysis, RNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Science ; 361(6405): 924-928, 2018 08 31.
Article in English | MEDLINE | ID: mdl-30166492

ABSTRACT

Three-dimensional genome structures play a key role in gene regulation and cell functions. Characterization of genome structures necessitates single-cell measurements. This has been achieved for haploid cells but has remained a challenge for diploid cells. We developed a single-cell chromatin conformation capture method, termed Dip-C, that combines a transposon-based whole-genome amplification method to detect many chromatin contacts, called META (multiplex end-tagging amplification), and an algorithm to impute the two chromosome haplotypes linked by each contact. We reconstructed the genome structures of single diploid human cells from a lymphoblastoid cell line and from primary blood cells with high spatial resolution, locating specific single-nucleotide and copy number variations in the nucleus. The two alleles of imprinted loci and the two X chromosomes were structurally different. Cells of different types displayed statistically distinct genome structures. Such structural cell typing is crucial for understanding cell functions.


Subject(s)
Chromatin/ultrastructure , DNA/ultrastructure , Diploidy , Genome, Human , Genomic Imprinting , Nucleic Acid Conformation , Algorithms , Alleles , Blood Cells/chemistry , Blood Cells/ultrastructure , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/ultrastructure , Chromatin/chemistry , Chromatin/genetics , Chromosomes, Human, X/ultrastructure , DNA/chemistry , DNA Copy Number Variations , Gene Expression Regulation , Haplotypes , Humans , Imaging, Three-Dimensional/methods , Nucleic Acid Amplification Techniques , Protein Conformation , Single-Cell Analysis/methods
17.
J Assist Reprod Genet ; 35(6): 1071-1078, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29790070

ABSTRACT

PURPOSE: This paper aims to investigate the feasibility of performing pre-implantation genetic diagnosis (PGD) and pre-implantation genetic screening (PGS) simultaneously by a universal strategy without the requirement of genotyping relevant affected family members or lengthy preliminary work on linkage analysis. METHODS: By utilizing a universal Mutated Allele Revealed by Sequencing with Aneuploidy and Linkage Analyses (MARSALA) strategy based on low depth whole genome sequencing (~3x), not involving specific primers' design nor the enrichment of SNP markers for haplotype construction. Single-sperm cells and trephectoderm cells from in vitro fertilized embryos from a couple carrying HBB mutations were genotyped. Haplotypes of paternal alleles were constructed and investigated in embryos, and the chromosome copy number profiles were simultaneously analyzed. RESULTS: The universal MARSALA strategy allows the selection of a euploid embryo free of disease mutations for in uterus transfer and successful pregnancy. A follow-up amniocentesis was performed at 17 weeks of gestation to confirm the PGD/PGS results. CONCLUSION: We present the first successful PGD procedure based on genotyping multiple single-sperm cells to obtain SNP linkage information. Our improved PGD/PGS procedure does not require genotyping the proband or relevant family members and therefore can be applicable to a wider population of patients when conducting PGD for monogenic disorders.


Subject(s)
Chromosome Disorders/diagnosis , Fertilization in Vitro/methods , Genetic Linkage , Genetic Testing , Genome, Human , Preimplantation Diagnosis/methods , Spermatozoa/metabolism , Adult , Aneuploidy , Chromosome Disorders/genetics , Embryo Transfer/standards , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Polymorphism, Single Nucleotide , Pregnancy , Spermatozoa/chemistry , Young Adult
18.
Nat Biotechnol ; 35(12): 1170-1178, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29106407

ABSTRACT

Eliminating errors in next-generation DNA sequencing has proved challenging. Here we present error-correction code (ECC) sequencing, a method to greatly improve sequencing accuracy by combining fluorogenic sequencing-by-synthesis (SBS) with an information theory-based error-correction algorithm. ECC embeds redundancy in sequencing reads by creating three orthogonal degenerate sequences, generated by alternate dual-base reactions. This is similar to encoding and decoding strategies that have proved effective in detecting and correcting errors in information communication and storage. We show that, when combined with a fluorogenic SBS chemistry with raw accuracy of 98.1%, ECC sequencing provides single-end, error-free sequences up to 200 bp. ECC approaches should enable accurate identification of extremely rare genomic variations in various applications in biology and medicine.


Subject(s)
Algorithms , High-Throughput Nucleotide Sequencing/methods , Information Theory , Sequence Analysis, DNA/methods , Fluorescent Dyes , Reproducibility of Results
19.
Proc Natl Acad Sci U S A ; 114(41): E8695-E8702, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973897

ABSTRACT

Reciprocal translocations (RecT) and Robertsonian translocations (RobT) are among the most common chromosomal abnormalities that cause infertility and birth defects. Preimplantation genetic testing for aneuploidy using comprehensive chromosome screening for in vitro fertilization enables embryo selection with balanced chromosomal ploidy; however, it is normally unable to determine whether an embryo is a translocation carrier. Here we report a method named "Mapping Allele with Resolved Carrier Status" (MaReCs), which enables chromosomal ploidy screening and resolution of the translocation carrier status of the same embryo. We performed MaReCs on 108 embryos, of which 96 were from 13 RecT carriers and 12 were from three RobT carriers. Thirteen of the sixteen patients had at least one diploid embryo. We have confirmed the accuracy of our carrier status determination in amniotic fluid karyotyping of seven cases as well as in the live birth we have thus far. Therefore, MaReCs accurately enables the selection of translocation-free embryos from patients carrying chromosomal translocations. We expect MaReCs will help reduce the propagation of RecT/RobT in the human population.


Subject(s)
Blastocyst , Fertilization in Vitro , Genetic Carrier Screening/methods , Infertility/therapy , Preimplantation Diagnosis , Translocation, Genetic , Alleles , Chromosome Aberrations , Embryo Transfer , Female , Humans , Infertility/genetics , Live Birth , Male , Pregnancy , Pregnancy Outcome
20.
Article in English | MEDLINE | ID: mdl-28955599

ABSTRACT

Conventional methods for intraoperative histopathologic diagnosis are labour- and time-intensive, and may delay decision-making during brain-tumour surgery. Stimulated Raman scattering (SRS) microscopy, a label-free optical process, has been shown to rapidly detect brain-tumour infiltration in fresh, unprocessed human tissues. Here, we demonstrate the first application of SRS microscopy in the operating room by using a portable fibre-laser-based microscope and unprocessed specimens from 101 neurosurgical patients. We also introduce an image-processing method - stimulated Raman histology (SRH) - which leverages SRS images to create virtual haematoxylin-and-eosin-stained slides, revealing essential diagnostic features. In a simulation of intraoperative pathologic consultation in 30 patients, we found a remarkable concordance of SRH and conventional histology for predicting diagnosis (Cohen's kappa, κ > 0.89), with accuracy exceeding 92%. We also built and validated a multilayer perceptron based on quantified SRH image attributes that predicts brain-tumour subtype with 90% accuracy. Our findings provide insight into how SRH can now be used to improve the surgical care of brain tumour patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...