Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 208(11): 2558-2572, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35562117

ABSTRACT

Kupffer cells (KCs), the largest tissue-resident macrophage population in the body, play a central role in maintaining a delicate balance between immune tolerance and immunity in the liver. However, the underlying molecular mechanism remains elusive. In this study, we show that KCs express high levels of miR-146a, which is under control of the PU.1 transcription factor. miR-146a deficiency promoted KCs differentiation toward a proinflammatory phenotype; conversely, miR-146a overexpression suppressed this phenotypic differentiation. We found that hepatitis B virus (HBV) persistence or HBV surface Ag treatment significantly upregulated miR-146a expression and thereby impaired polarization of KCs toward a proinflammatory phenotype. Furthermore, in an HBV carrier mouse model, KCs depletion by clodronate liposomes dramatically promoted HBV clearance and enhanced an HBV-specific hepatic CD8+ T cell and CD4+ T cell response. Consistent with this finding, miR-146a knockout mice cleared HBV faster and elicited a stronger adaptive antiviral immunity than wild-type mice. In vivo IL-12 blockade promoted HBV persistence and tempered the HBV-specific CTL response in the liver of miR-146a knockout mice. Taken together, our results identified miR-146a as a critical intrinsic regulator of an immunosuppressive phenotype in KCs under inflammatory stimuli, which may be beneficial in maintenance of liver homeostasis under physiological condition. Meanwhile, during HBV infection, miR-146a contributed to viral persistence by inhibiting KCs proinflammatory polarization, highlighting its potential as a therapeutic target in HBV infection.


Subject(s)
Hepatitis B , Immune Tolerance , Kupffer Cells , MicroRNAs , Animals , Hepatitis B/immunology , Hepatitis B virus , Kupffer Cells/immunology , Mice , Mice, Knockout , MicroRNAs/genetics
2.
Transl Oncol ; 19: 101388, 2022 May.
Article in English | MEDLINE | ID: mdl-35259676

ABSTRACT

Punicalagin, which is derived from pomegranate peel, is reported to exert growth-inhibitory effects against various cancers. However, the underlying mechanisms have not been elucidated. Human papillomavirus (HPV), a major oncovirus, utilizes the host autophagic machinery to support its replication. Here, punicalagin markedly downregulated the levels of the major HPV oncoproteins E6 and E7 in cervical cancer cells through the autophagy-lysosome system. Additionally, punicalagin activated the reactive oxygen species (ROS)-JNK pathway and promoted the phosphorylation of BCL2, which led to the dissociation of BCL2 from BECN1 and the induction of autophagy. Treatment with autophagy and JNK inhibitors or ROS scavengers mitigated the punicalagin-induced degradation of E6 and E7. Moreover, the knockout of ATG5 using the clustered regularly interspaced palindrome repeat/Cas 9 system mitigated the punicalagin-induced downregulation of E6/E7. This indicated that punicalagin-induced degradation of E6 and E7 was dependent on autophagy. The results of in vivo studies demonstrated that punicalagin efficiently inhibits cervical cancer growth. In conclusion, this study elucidated a mechanism of punicalagin-induced autophagic degradation of E6 and E7. It will enable the future applications of punicalagin as a therapeutic for HPV-induced cervical cancer.

3.
New Phytol ; 234(2): 618-633, 2022 04.
Article in English | MEDLINE | ID: mdl-35075654

ABSTRACT

Posttranslational modifications (PTMs) play important roles in virus-host interplay. We previously demonstrated that Barley stripe mosaic virus (BSMV) γb protein is phosphorylated by different host kinases to support or impede viral infection. However, whether and how other types of PTMs participate in BSMV infection remains to be explored. Here, we report that S-adenosylmethionine decarboxylase 3 (SAMDC3) from Nicotiana benthamiana or wheat (Triticum aestivum) interacts with γb. BSMV infection induced SAMDC3 expression. Overexpression of SAMDC3 led to the destabilization of γb and reduction in viral infectivity, whereas knocking out NbSAMDC3 increased susceptibility to BSMV. NbSAMDC3 positively regulated the 26S proteasome-mediated degradation of γb via its PEST domain. Further mechanistic studies revealed that γb can be ubiquitinated in planta and that NbSAMDC3 promotes the proteasomal degradation of γb by increasing γb ubiquitination. We also found evidence that ubiquitination occurs at nonlysine residues (Ser-133 and Cys-144) within γb. Together, our results provide a function for SAMDC3 in defence against BSMV infection through targeting of γb abundance, which contributes to our understanding of how a plant host deploys the ubiquitin-proteasome system to mount defences against viral infections.


Subject(s)
Hordeum , Plant Viruses , Adenosylmethionine Decarboxylase/metabolism , Hordeum/metabolism , Plant Viruses/metabolism , Ubiquitination , Viral Proteins/metabolism
4.
iScience ; 24(12): 103445, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34877502

ABSTRACT

Upregulation and stabilization of Foxp3 expression in Tregs are essential for regulating Treg function and immune homeostasis. In this study, gp96 immunization showed obvious therapeutic effects in a Lyn -/- mouse model of systemic lupus erythematosus. Moreover, gp96 alleviated the initiation and progression of MOG-induced experimental autoimmune encephalomyelitis. Immunization of gp96 increased Treg frequency, expansion, and suppressive function. Gene expression profiling identified the NF-κB family member p65 and c-Rel as the key transcription factors for enhanced Foxp3 expression in Treg by gp96. Mutant gp96 within its Toll-like receptor (TLR) binding domain, TLR2 knockout mice, and mice with cell-specific deletion of MyD88, were used to demonstrate that gp96 activated Tregs and induced Foxp3 expression via a TLR2-MyD88-mediated NF-κB signaling pathway. Taken together, these results show that gp96 immunization restricted antibody-induced and Th-induced autoimmune diseases by integrating Treg expansion and activation, indicating its potential clinical usefulness against autoimmune diseases.

5.
Plant Physiol ; 186(1): 715-730, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33576790

ABSTRACT

Protein phosphorylation is a common post-translational modification that frequently occurs during plant-virus interaction. Host protein kinases often regulate virus infectivity and pathogenicity by phosphorylating viral proteins. The Barley stripe mosaic virus (BSMV) γb protein plays versatile roles in virus infection and the coevolutionary arms race between plant defense and viral counter-defense. Here, we identified that the autophosphorylated cytosolic serine/threonine/tyrosine (STY) protein kinase 46 of Nicotiana benthamiana (NbSTY46) phosphorylates and directly interacts with the basic motif domain (aa 19-47) of γb in vitro and in vivo. Overexpression of wild-type NbSTY46, either transiently or transgenically, suppresses BSMV replication and ameliorates viral symptoms, whereas silencing of NbSTY46 leads to increased viral replication and exacerbated symptom. Moreover, the antiviral role of NbSTY46 requires its kinase activity, as the NbSTY46T436A mutant, lacking kinase activity, not only loses the ability to phosphorylate and interact with γb but also fails to impair BSMV infection when expressed in plants. NbSTY46 could also inhibit the replication of Lychnis ringspot virus, another chloroplast-replicating hordeivirus. In summary, we report a function of the cytosolic kinase STY46 in defending against plant viral infection by phosphorylating a viral protein in addition to its basal function in plant growth, development, and abiotic stress responses.


Subject(s)
Nicotiana/immunology , Plant Proteins/genetics , Plant Viruses/physiology , Protein Serine-Threonine Kinases/genetics , RNA Viruses/physiology , Phosphorylation , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Nicotiana/genetics , Nicotiana/virology
6.
Plant Cell ; 30(7): 1582-1595, 2018 07.
Article in English | MEDLINE | ID: mdl-29848767

ABSTRACT

Autophagy is a conserved defense strategy against viral infection. However, little is known about the counterdefense strategies of plant viruses involving interference with autophagy. Here, we show that γb protein from Barley stripe mosaic virus (BSMV), a positive single-stranded RNA virus, directly interacts with AUTOPHAGY PROTEIN7 (ATG7). BSMV infection suppresses autophagy, and overexpression of γb protein is sufficient to inhibit autophagy. Furthermore, silencing of autophagy-related gene ATG5 and ATG7 in Nicotiana benthamiana plants enhanced BSMV accumulation and viral symptoms, indicating that autophagy plays an antiviral role in BSMV infection. Molecular analyses indicated that γb interferes with the interaction of ATG7 with ATG8 in a competitive manner, whereas a single point mutation in γb, Tyr29Ala (Y29A), made this protein deficient in the interaction with ATG7, which was correlated with the abolishment of autophagy inhibition. Consistently, the mutant BSMVY29A virus showed reduced symptom severity and viral accumulation. Taken together, our findings reveal that BSMV γb protein subverts autophagy-mediated antiviral defense by disrupting the ATG7-ATG8 interaction to promote plant RNA virus infection, and they provide evidence that ATG7 is a target of pathogen effectors that functions in the ongoing arms race of plant defense and viral counterdefense.


Subject(s)
Plant Viruses/metabolism , Plant Viruses/pathogenicity , Plant Proteins/metabolism , Plant Viruses/genetics , Protein Binding , RNA, Viral/genetics , Nicotiana/metabolism , Nicotiana/virology
7.
Sci Rep ; 8(1): 3521, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476067

ABSTRACT

HIV-1 latent reservoirs harbouring silenced but replication-competent proviruses are a major obstacle against viral eradication in infected patients. The "shock and kill" strategy aims to reactivate latent provirus with latency reversing agents (LRAs) in the presence of antiretroviral drugs, necessitating the development of effective and efficient LRAs. We screened a chemical library for potential LRAs and identified two dual Polo-like kinase (PLK)/bromodomain inhibitors, BI-2536 and BI-6727 (volasertib), which are currently undergoing clinical trials against various cancers. BI-2536 and BI-6727 significantly reactivated silenced HIV-1 provirus at both the mRNA and protein level in two latently infected model cell lines (ACH2 and U1). BI-2536 dramatically reactivated transcription of latent HIV-1 provirus in peripheral blood mononuclear cells derived from infected patients. Long terminal repeat activation by the inhibitors was associated with bromodomain rather than PLK inhibition. We also found that BI-2536 synergistically activates the latent provirus in combination with SAHA, a histone deacetylase inhibitor, or the non-tumour-promoting phorbol ester prostratin. Our findings strongly suggest that BI-2536 and BI-6727 are potent LRAs for the "shock and kill" HIV-1 eradication strategy.


Subject(s)
Gene Expression Regulation, Viral/drug effects , HIV-1/drug effects , Pteridines/pharmacology , RNA, Viral/genetics , Virus Activation/drug effects , Virus Latency/drug effects , Cell Line, Tumor , Drug Combinations , HIV-1/genetics , HIV-1/growth & development , Histone Deacetylase Inhibitors/pharmacology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Inhibitory Concentration 50 , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Lymphocytes/drug effects , Lymphocytes/metabolism , Lymphocytes/virology , Monocytes/drug effects , Monocytes/metabolism , Monocytes/virology , Phorbol Esters/pharmacology , Primary Cell Culture , Protein Domains , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/agonists , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/agonists , RNA, Viral/metabolism , THP-1 Cells , Transcription, Genetic/drug effects , Virus Activation/genetics , Virus Latency/genetics , Vorinostat/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...