Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 941: 173704, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38844222

ABSTRACT

With the intensification of human activities, the amount of phosphorus (P)-containing waste has increased. When such waste is not recycled, P is released into the environment, leading to environmental issues such as the eutrophication of water bodies. In this study, based on the material flow analysis method, a P Waste Flow analysis model (P-WFA) was developed to analyze the P flow in the waste system of Poyang Lake, the largest freshwater lake in China. To address the research gap in long-term P flow analysis at the watershed scale, this study quantified the P content in the waste system of the Poyang Lake Watershed from 1950 to 2020. The analysis revealed that from 1950 to 2020, the total P input into the waste system increased from 5.49 × 104 tons in 1950 to 2.28 × 105 tons in 2020. The breeding industry system was identified as the primary source, accounting for 25.19-41.59 % of the total waste system. Over the past 70 years, P loss to surface water from waste systems has been primarily facilitated by manure from the breeding industry, as well as drainage from crop farming systems (77.74 % in 2020). At the same time, the P recycling rate (PRR) of the waste system exhibited an initial increase followed by a decrease, increasing from 44.14 % to 47.75 % before dropping to 44.41 %. Population growth, urbanization, and changes in consumption levels in Jiangxi Province have led to changes in the dietary structure and fertilizer use, consequently affecting the P cycling pattern. This study presents a comprehensive P flow model for waste systems in the Poyang Lake Watershed. This model can be used as a reference to enhance P cycling and manage P loss in other large freshwater lakes.

2.
J Hazard Mater ; 468: 133730, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368681

ABSTRACT

The ecological restoration of rare earth mines and the management of rare earth tailings have consistently posed global challenges, constraining the development of the rare earth industry. In this study, Zeolite A is efficiently prepared from the tailings of an ion-type rare earth mine in the southern Jiangxi Province of China. The resulting Zeolite A boasts exceptional qualities, including high crystallinity, a substantial specific surface area, and robust thermal stability. The optimum conditions for Zeolite synthesis are experimental determination and the adsorption properties of Zeolite A for typical pollutants (Cd2+, Cu2+, NH4+, PO43- and F-) in rare earth mines. The synthesised Zeolite A material is found to have strong adsorption properties. The adsorption mechanism is mainly cation exchange, and the priority of adsorption of pollutants is Cu2+> Cd2+ > NH4+ > PO43- > F-. Notably, the sodium Zeolite A material synthesized at room temperature can be effectively recycled multiple times. In summary, we propose a method to synthesise low cost and high adsorption zeolites using rare earth tailings. This will facilitate the reduction of rare earth tailings and the rehabilitation of rare earth mines. Our method has great potential as a rehabilitation technology for rare earth mines.

3.
J Environ Manage ; 351: 119520, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043311

ABSTRACT

The interaction between water environment and social economy at a basin scale is complex and challenging to quantify. To address this issue, this study proposes an integrated framework that builds parametric connections among water, contaminants, administrative regions, and social activities. The framework, known as the water environmental carrying capacity (WECC) optimization framework, effectively captures the intricacy of the interaction and integrates socio-economic parameter structure relationships, a water environmental model, a WECC optimization model, and a sensitivity analysis of regulatory parameters. Applied to the Anhui-Huaihe Basin in mid-eastern China, the framework considers nine administrative regions and three economic factors: industry, agriculture, and GDP per capita (pGDP). Results show that the current water environmental carrying capacity of the watershed is insufficient to meet socio-economic development requirements. After optimization, the WECC for industry, agriculture, and pGDP in the region increased by 22.40%, 26.59%, and 15.08% respectively. Overall COD and NH4-N discharge decreased by 13.6% and 14.7% respectively, effectively reducing pollution loads in rivers and enhancing sustainable development potential. At the regional scale, optimization for industry, agriculture, and pGDP exhibited different characteristics, but all aimed to improve efficiency by reducing the K value (pollution discharge/output value ratio). Regions with industrial treatment rates (αwt) below 0.8 should prioritize increasing treatment rates, while those above 0.8 should consider industrial upgrading for enhanced efficiency. For agriculture, important sensitive parameters for farming and livestock breeding are the proportion of high standard farmland (αs) and the scale breeding ratio (αb), which should be increased to above 0.15 and 0.83 respectively for all regions to achieve agricultural optimization. For pGDP optimization, the focus is on improving living environments and reducing pollution discharge, with crucial measures including collecting and treating rural domestic sewage, where the rural toilet improvement rate (αt) in each region should be increased to 0.78 or above. The results emphasize the need for both interregional allocation and intraregional planning to achieve comprehensive basin optimization and a harmonious balance between regional development and water environment.


Subject(s)
Conservation of Natural Resources , Water , Environmental Pollution , Rivers/chemistry , Agriculture , China
4.
Chemosphere ; 349: 140932, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096991

ABSTRACT

In this paper, the two-dimensional (2D) layered CoAl LDH (CoAl) was coupled with Bi2MoO6 (BMO) nanoplate and used for tetracycline (TC) degradation. Based on the results of UV-visible diffuse reflectance spectrum (UV-vis DRS), Motty-Schottky curves, and in situ X-ray photoelectron spectroscopy (XPS), a novel 2D/2D Bi2MoO6/CoAl LDH S-scheme heterojunction photocatalyst was built. The photodegradation rate constant of TC by the optimized sample BMO/CoAl30 was 3.637 × 10-2 min-1, which was 1.26 times and 4.01 times higher than that of Bi2MoO6 and CoAl LDH, respectively. The favorable photocatalytic performance of the heterojunction was attributed to the increased interfacial contact area of the 2D/2D structure. Besides, the transfer of photogenerated electrons from Bi2MoO6 to CoAl LDH under the effect of the built-in electric field (BIEF) reduced the recombination of photogenerated carriers and further improved the photocatalytic performance. The reactive species of h+, ·O2-, and 1O2 exhibited critical roles to degrade TC molecules by reactive radicals capture experiments and electron spin resonance (ESR) tests. The intermediate products of TC degradation and toxicity of intermediates were analyzed by liquid chromatography-mass spectrometer (LC-MS) and Toxicity Estimation Software Tool (T.E.S.T). Additionally, the BMO/CoAl composite photocatalysts showed high stability and environmental tolerance during the testing of cycles and environmental impacts with various water sources, organic contaminants, initial pH, and inorganic ions. This work provides a new protocol for designing and constructing novel 2D/2D S-scheme heterojunction photocatalysts for wastewater treatment.


Subject(s)
Heterocyclic Compounds , Tetracycline , Anti-Bacterial Agents , Bismuth , Chromatography, Liquid , Coal
5.
Water Res ; 250: 121078, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159540

ABSTRACT

Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m2 g-1 and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV254 absorbance decreased by 97 %) in the water at the dosage of 1 g L-1 and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.


Subject(s)
Cellulose , Cyclodextrins , Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Chlorine/chemistry , Disinfectants/chemistry , Chlorides/chemistry , Halogenation , Trihalomethanes/chemistry , Anti-Bacterial Agents/pharmacology , Magnetic Phenomena , Water Pollutants, Chemical/analysis
6.
Water Res ; 245: 120546, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37688855

ABSTRACT

Understanding the historical patterns of phosphorus (P) cycling is essential for sustainable P management and eutrophication mitigation in watersheds. Currently, there is a lack of long-term watershed-scale models that analyze the flow of P substances and quantify the socioeconomic patterns of P flow. This study adopted a watershed perspective and incorporated crucial economic and social subsystems related to P production, consumption, and emissions throughout the entire life cycle. Based on this approach, a bottom-up watershed P flow analysis model was developed to quantify the P cycle for the first time in the Poyang Lake watershed from 1950 to 2020 and to explore the driving factors that influence its strength by analyzing multi-year P flow results. In general, the P cycle in the Poyang Lake watershed was no longer a naturally dominated cycle but significantly influenced by human activities during the flow dynamics between 1950 and 2015. Agricultural intensification and expansion of large-scale livestock farming continue to enhance the P flow in the study area. Fertilizer P inputs from cultivation account for approximately 60% of the total inputs to farming systems, but phosphate fertilizer utilization continues to decline. Feed P inputs have continued to increase since 2007. The expansion of large-scale farming and the demand for urbanization are the main factors leading to changes in feed P input patterns. The P utilization rate for livestock farming (PUEa) is progressively higher than international levels, with PUEa increasing from 0.64% (1950) to 9.7% (2020). Additionally, per capita food P consumption in the watershed increased from 0.67 kg to 0.80 kg between 1950 and 2020. The anthropogenic P emissions have increased from 1.67 × 104 t (1950) to 8.73 × 104 t (2020), with an average annual growth rate of 2.41%. Watershed-wide P pollution emissions have increased by more than five-fold. Population growth and agricultural development are important drivers of structural changes in P flows in the study area, and they induce changes in social conditions, including agricultural production, dietary structure, and consumption levels, further dominating the cyclic patterns of P use, discharge, and recycling. This study provides a broader and applicable P flow model to measure the characteristics of the P cycle throughout the watershed social system as well as provides methodological support and policy insights for large lakes in rapidly developing areas or countries to easily present P flow structures and sustainably manage P resources.

7.
Chemosphere ; 341: 140056, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696480

ABSTRACT

Pillararene polymers have been widely used as excellent adsorbents for water treatment, but pillararene polymers with ultra-high specific surface area and versatility are still rarely reported. Herein, a quaternary ammonium salt modified pillar [5] arene polymer, QPBP [5], with specific surface area of 1844 m2 g-1 was successfully synthesized. Since QPBP [5] has abundant different adsorption sites, it exhibits excellent performance for the simultaneously removal of organic pollutants with different charges from water. The selected three model pollutants, Rhodamine B (RhB, positively charged), Sulfamethazine (SMT, electrically neutral) and Fulvic acid (FA, negatively charged), could be rapidly and efficiently removed from water by QPBP [5] within 10 min, which are much faster than them by most of the reported adsorbents. RhB and SMT are mainly adsorbed through hydrophobic interactions with the QPBP [5] surface, while FA is mainly removed through ion exchange. In addition, QPBP [5] also showed excellent reusability and adsorption performance for the environmentally relevant concentration of pollutants. Furthermore, the quaternary ammonium groups on QPBP [5] makes it a solid disinfectant with excellent antibacterial properties. In conclusion, QPBP [5] is a promising multifunctional adsorbent for the treatment of complex pollutants in water.


Subject(s)
Disinfectants , Environmental Pollutants , Water Purification , Porosity , Disinfectants/pharmacology , Polymers
8.
Chemosphere ; 336: 139254, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37331659

ABSTRACT

Zero-valent iron (ZVI) is a promising technology for groundwater treatment, and its efficiency primarily depends on the electron transfer. However, there are still some problems such as low electron efficiency of ZVI particles and high yield of iron sludge that limits the performance, which warrant further investigation. In our study, a silicotungsten acidified ZVI composite (m-WZVI) was synthesized by ball milling to activate PS to degrade phenol. m-WZVI has a better performance on phenol degradation (with a removal rate of 91.82%) than ball mill ZVI(m-ZVI) with persulfate (PS) (with a removal rate of 59.37%). Compared with m-ZVI, the first-order kinetic constant (kobs) of m-WZVI/PS is 2-3 times higher than that of the others. Iron ion was gradually leached in m-WZVI/PS system, being only 2.11 mg/L after 30 min, having to avoid excessive consumption of active substances. The underlying mechanisms of m-WZVI for PS activation mainly include: 1) were elucidated through different characterizations analyses that accounted for silictungstic acid (STA) can be combined with ZVI, and a new electron donor (SiW124-) was obtained, which improved the transfer rate performance of electrons for activating PS; 2) singlet oxygen (1O2) is the main active substance for phenol degradation, but other radicals also played an important role. Therefore, m-WZVI has good prospects for improving the electron utilization of ZVI.


Subject(s)
Iron , Water Pollutants, Chemical , Iron/chemistry , Oxidation-Reduction , Electrons , Water Pollutants, Chemical/chemistry , Phenols
9.
Chemosphere ; 333: 138949, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37196789

ABSTRACT

In recent years, Poyang Lake has been affected by severe agricultural non-point source (NPS) pollution, a global water pollution problem. The most recognized and effective control measure for agricultural NPS pollution is the strategic selection and placement of best management practices (BMPs) for critical source areas (CSAs). The present study employed the Soil and Water Assessment Tool (SWAT) model to identify CSAs and evaluate the effectiveness of different BMPs in reducing agricultural NPS pollutants in the typical sub-watersheds of the Poyang Lake watershed. The model performed well and satisfactorily in simulating the streamflow and sediment yield at the outlet of the Zhuxi River watershed. The results indicated that urbanization-oriented development strategies and the Grain for Green program (returning the grain plots to forestry) had certain effects on the land-use structure. The proportion of cropland in the study area decreased from 61.45% (2010) to 7.48% (2018) in response to the Grain for Green program, which was mainly converted to forest land (58.7%) and settlements (36.8%). Land-use type changes alter the occurrence of runoff and sediment, which further affect the nitrogen (N) and phosphorus (P) loads since sediment load intensity is a key factor affecting the P load intensity. Vegetation buffer strips (VBSs) proved the most effective BMPs for NPS pollutant reduction, and the cost of 5-m VBSs proved the lowest. The effectiveness of each BMP in reducing N/P load ranked as follows: VBS > grassed river channels (GRC) > 20% fertilizer reduction (FR20) > no-tillage (NT) > 10% fertilizer reduction (FR10). All combined BMPs had higher N and P removal efficiencies than the individual measures. We recommend combining FR20 and VBS-5m or NT and VBS-5m, which could achieve nearly 60% pollutant removal. Depending on the site conditions, the choice between FR20+VBS and NT + VBS is flexible for targeted implementation. Our findings may contribute to the effective implementation of BMPs in the Poyang Lake watershed and provide theoretical support and practical guidance for agricultural authorities to perform and direct agricultural NPS pollution prevention and control.


Subject(s)
Environmental Pollutants , Non-Point Source Pollution , Cost-Benefit Analysis , Rivers , Fertilizers , Lakes , Agriculture/methods , Water Pollution/prevention & control , Water Pollution/analysis , Phosphorus/analysis , Nitrogen/analysis , Environmental Monitoring/methods
10.
Sci Total Environ ; 881: 163463, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37062315

ABSTRACT

In modern geochemistry, phosphorus (P) is considered synonymous with phosphate (Pi) because Pi controls the growth of organisms as a limiting nutrient in many ecosystems. The researchers therefore realised that a complete P cycle is essential. Limited by thermodynamic barriers, P was long believed to be incapable of redox reactions, and the role of the redox cycle of reduced P in the global P cycling system was thus not ascertained. Nevertheless, the phosphite (Phi) form of P is widely present in various environments and participates in the global P redox cycle. Herein, global quantitative evidences of Phi are enumerated and the early origin and modern biotic/abiotic sources of Phi are elaborated. Further, the Phi-based redox pathway for P reduction is analysed and global multienvironmental Phi redox cycle processes are proposed on the basis of this pathway. The possible role of Phi in controlling algae in eutrophic lakes and its ecological benefits to plants are proposed. In this manner, the important role of Phi in the P redox cycle and global P cycle is systematically and comprehensively identified and confirmed. This work will provide scientific guidance for the future production and use of Phi products and arouse attention and interest on clarifying the role of Phi in the environmental phosphorus cycle.

11.
Chemosphere ; 331: 138775, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37100249

ABSTRACT

The COVID-19 pandemic has severely impacted public health and the worldwide economy. The overstretched operation of health systems around the world is accompanied by potential and ongoing environmental threats. At present, comprehensive scientific assessments of research on temporal changes in medical/pharmaceutical wastewater (MPWW), as well as estimations of researcher networks and scientific productivity are lacking. Therefore, we conducted a thorough literature study, using bibliometrics to reproduce research on medical wastewater over nearly half a century. Our primary goal is systematically to map the evolution of keyword clusters over time, and to obtain the structure and credibility of clusters. Our secondary objective was to measure research network performance (country, institution, and author) using CiteSpace and VOSviewer. We extracted 2306 papers published between 1981 and 2022. The co-cited reference network identified 16 clusters with well-structured networks (Q = 0.7716, S = 0.896). The main trends were as follows: 1) Early MPWW research prioritized sources of wastewater, and this cluster was considered to be the mainstream research frontier and direction, representing an important source and priority research area. 2) Mid-term research focused on characteristic contaminants and detection technologies. Particularly during 2000-2010, a period of rapid developments in global medical systems, pharmaceutical compounds (PhCs) in MPWW were recognized as a major threat to human health and the environment. 3) Recent research has focused on novel degradation technologies for PhC-containing MPWW, with high scores for research on biological methods. Wastewater-based epidemiology has emerged as being consistent with or predictive of the number of confirmed COVID-19 cases. Therefore, the application of MPWW in COVID-19 tracing will be of great interest to environmentalists. These results could guide the future direction of funding agencies and research groups.


Subject(s)
COVID-19 , Wastewater , Humans , Pandemics , COVID-19/epidemiology , Research , Pharmaceutical Preparations
12.
J Hazard Mater ; 443(Pt B): 130300, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36345061

ABSTRACT

Layered double hydroxide (LDH) materials were widely applied for adsorption and photodegradation of pollutants for wastewater treatment. New efficient LDH materials with adsorption and photodegradation abilities will be promising candidates for pollutants removal. Hence, a series of NiFe-LDH/biochar (NiFe/BC) were fabricated by the coprecipitation method for synergistic adsorption and photodegradation anionic dyes of reactive red 120 (RR120). The removal experiment showed that the addition of an appropriate amount of biochar into NiFe-LDH enhanced the adsorption capacity and its photocatalytic ability. The optimized NiFe/BC2 composite can remove 88.5 % of RR120 under visible light by adsorption and photocatalysis, which was much better than NiFe-LDH (63.3 %) and biochar (2.6 %). The photodegradation kinetic constant of the NiFe/BC2 composite was 3.1 and 104.8 times that of NiFe-LDH and BC. In addition, active species capture experiments and electron spin resonance (ESR) tests revealed the removal mechanisms of NiFe/BC composites for RR120 removal. This work affords a feasible strategy for preparing LDH-based photocatalyst with excellent adsorption and photocatalytic performance for wastewater treatment.


Subject(s)
Environmental Pollutants , Nickel , Adsorption , Iron , Photolysis , Hydroxides
13.
Water Res ; 222: 118917, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35961197

ABSTRACT

Keeping water clean is of vital significance for human health and environmental protection. In order to remove organic micro-pollutants and natural organic substances in water bodies and kill pathogenic microorganisms simultaneously, this study synthesized a multifunctional porous ß-cyclodextrin polymer with a high specific surface area by introducing quaternary ammonium groups and rigid benzene rings, respectively, which was then polymerized with crosslinking agent-4,4'-bis (chloromethyl)-1,1'-biphenyl (BCMBP) in an ionic liquid system. The grafting of quaternary ammonium groups was beneficial for the removal of negative-charged humic acid (HA) and sterilization. The introduction of numerous rigid structures during benzylation and Friedel-Crafts alkylation reaction could significantly improve the porosity and specific surface area of the polymer, conducive to the exposure of cyclodextrin binding sites and contaminant adsorption. By changing the proportions of quaternization and benzylation, the structure and surface properties of the polymer could be adjusted, thus further regulating the adsorption performance. Compared with activated carbon, the polymer named BQCD-BP with a huge surface area of 1133 m2 g-1 prepared under optimized conditions showed outstanding adsorption performance and sterilization ability. The pseudo-second-order kinetic constant of BQCD-BP reached 1.2058 g·mg-1·min-1, which was approximately 50 times greater than that of activated carbon (0.0256 g·mg-1·min-1) under the same experimental condition. The adsorption capacity of BQCD-BP to HA was twice as high as that to AC, and the antibacterial ability of BQCD-BP was significant, achieving 90% at the dosage of 1g L-1. Moreover, the adsorption process was hardly affected by the hydrochemical conditions, and the polymer was easy to regenerate. In addition, the excellent adsorption and antibacterial performance of the polymer were also identified by natural water treatment. COD was almost completely removed, and the removal efficiency of TP reached 92% after contact with BQCD-BP. The sterilization rate of BQCD-BP to viable bacteria in complex water bodies reached 82%. Undoubtedly, BQCD-BP is a potential multifunctional water treatment material with reasonable design in the actual water purification.


Subject(s)
Ammonium Compounds , Cyclodextrins , Water Pollutants, Chemical , Water Purification , Adsorption , Anti-Bacterial Agents , Cellulose , Charcoal/chemistry , Cyclodextrins/chemistry , Humans , Humic Substances , Polymers/chemistry , Porosity , Water Pollutants, Chemical/chemistry
14.
Environ Res ; 212(Pt D): 113391, 2022 09.
Article in English | MEDLINE | ID: mdl-35597293

ABSTRACT

Taihu Lake is the most important drinking water source of the major cities in the Yangtze River Delta. The pollution of endocrine disruptors (EDCs)in Taihu Lake has been increasing recently, the accurate determination is an important guide for predicting its health risks and developing appropriate controls. Monitoring organic pollutants in water using the diffusive gradient in thin film technique (DGT) has attracted much attention due to more accuracy and convenience than the grab sampling methods. In this study, a novel cyclodextrin polymer (CDP) synthesized by the simple and green method in water was taken as an adsorbent for the binding gel. Four endocrine-disrupting chemicals (EDCs), bisphenol A (BPA), 17α-ethinylestradiol (EE2), 17ß-estradiol (E2), and estriol (E3), were taken as models to determine the diffusion coefficients (4.68 × 10-6, 3.38 × 10-6, 3.34 × 10-6 and 4.31 × 10-6 cm2/s) and to test the performance of DGT, such as adsorption capacity and deployment time (1-5 day). The assembled CDP-DGT was adopted to determine four EDCs in a simulated water environment (3-9 of pH, 0.001-0.5 M of ionic strength (IS), and dissolved organic matter (DOM) of 0-20 mg/L). The ability of CDP-DGT sampling was verified in the Jiuxiang River and was carried out for a large-scale field application of in situ sampling EDCs in Taihu Lake basin. The results show that the total EDCs concentration range and the estradiol equivalent concentrations (EEQ) in Taihu Lake and its main rivers are 2.78 ng/L to 11.08 ng/L and 2.62 ng/L to 10.91 ng/L, respectively. The risk quotients (RQs) of all sampling sites in the region were greater than 1, indicating that EDCs pose a serious threat to aquatic organisms in the area. Therefore, the monitoring of EDCs in the Taihu Lake basin should be further strengthened.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Cellulose , China , Cyclodextrins , Endocrine Disruptors/analysis , Environmental Monitoring/methods , Estradiol , Gels , Lakes/chemistry , Risk Assessment , Rivers/chemistry , Water , Water Pollutants, Chemical/analysis
15.
Environ Res ; 210: 112920, 2022 07.
Article in English | MEDLINE | ID: mdl-35167850

ABSTRACT

Graphitic carbon nitride (CN), as a non-metal material, has emerged as a promising photocatalyst to address environmental issues with the favorable band gap and chemical stability. The porous oxygen-doped CN nanosheets (CNO) were synthesized by an ecofriendly and efficient self-assembled approach using a sole urea as the precursor. The CNO photocatalysts were derived from the hydrogen-bonded cyanuric acid-urea supramolecular complex, which were obtained by pretreatment of urea at high temperature and pressure. The homogeneous supramolecular assembly was advantageous to the formation of uniform porous and oxygen-doped CN nanosheets. The formation process of the supramolecular intermediate and the CNO nanosheets were investigated. Moreover, doping amount of O in CNO could be controlled by the time of the high-pressure thermal polymerization of urea. The characterization results shown that the O atoms were successfully doped into the framework of CN by substitution the N atoms to form the C-O structures. The obtained CNO photocatalysts demonstrated the excellent visible-light photocatalytic performances for sulfamerazine (SMR) degradation, which was ascribed to synergistic interaction of porous structure and O doping. The degradation intermediates of SMR were identified and the degradation pathway were also proposed. Furthermore, density functional theory (DFT) calculations proved that O doping changed the electronic structure of CN, resulting in more easier to activate O2. This work provides a novel perceptive for the development of high-performance nonmetal photocatalysts by using the homogeneous supramolecular assembly, which exhibits great potential in the environmental treatment.


Subject(s)
Environmental Pollutants , Oxygen , Anti-Bacterial Agents , Catalysis , Graphite , Light , Nitrogen Compounds , Oxygen/chemistry , Urea
16.
Sci Total Environ ; 806(Pt 4): 150739, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34619202

ABSTRACT

Chlorophenols (CPs) have been listed as priority control pollutants because of their high toxicity and wide range. An In-situ monitoring technique using diffusive gradients in thin films based on porous ß-cyclodextrin polymers as binding materials (CDP-DGT), was established to monitor four typical CPs, namely, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2,4,6-Trichlorophenol (2,4,6-TCP) in water and soils. The performance of CDP-DGT are stable under the conditions of pH 3.5-9.3, ionic strength 0.001-0.500 mol L-1 and dissolved organic matter concentration 0-20 mol L-1. The adsorption capacities of CDP-DGT for 4-CP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP were 57.80 µg cm-2, 98.82 µg cm-2, 95.69 µg cm-2 and 98.91 µg cm-2, respectively. The time-average weighted concentrations of four CPs determined by CDP-DGT at Sanjiangkou wharf (Yangtze river, China) were consistent with the results of grab sampling, indicating the feasibility of CDP-DGT application in actual water. In addition, the distribution of CPs in the red soil of Kunming and paddy soil of Yixing were also studied by CDP-DGT, and the desorption kinetics in the two soils were analyzed with the DIFS model. The higher the soil organic matter content is, the more CPs are distributed in the soil solid phase. CPs in both soils can be partially resupplied to soil solution from the soil solid phase and the higher the partition coefficient for labile CPs is, the stronger the supplement capacity is.


Subject(s)
Chlorophenols , Water Pollutants, Chemical , beta-Cyclodextrins , Diffusion , Environmental Monitoring , Polymers , Soil , Water , Water Pollutants, Chemical/analysis
17.
Environ Res ; 207: 112160, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34600883

ABSTRACT

The combination of adsorption-photocatalysis and advanced oxidation processes (AOP) based on sulfate (SO4•-) for the treatment of organic pollution has the advantages of a high degradation rate, affordability, and an absence of secondary pollution. This study combined amphiphilic super-crosslinked porous cyclodextrin resin (PBCD-B-D), bismuth oxybromide (BiOBr), a composite material with dual functions of adsorption and photocatalysis, and AOP based on SO4•- for the treatment of Acid Orange 7 (AO7) in water. The combination of BiOBr/PBCD-B-D (BOP-24) with peroxymonosulfate (PMS) showed an optimal adsorption-photocatalytic effect. Compared to the 24% PBCD-B-D (BOP-24)/visible light system, the degradation efficiency of BOP-24/PMS system for AO7 is increased from 64.1% to 99.2% within shorter time (∼60 min). Moreover, the BOP-24/PMS system showed a wide range of pH application (pH = 3-11). The addition of Cl-, SO42-, and NO3- promoted the photodegradation of AO7, whereas the addition of CO32- did not. The free radical capture experiments of the BOP-24/PMS AO7 degradation system showed that •O2-, h+, •OH, and SO4•- are reactive species. The proposed BOP-24 system used adsorption and a unique cavity structure to enrich AO7 near the active site, thereby reducing the path for PMS activation. PMS also acted as an electron (e-) acceptor to promote the transfer of part of e- to PMS, thereby further improving the efficiency of carrier separation. The proposed system is an effective method to improve the degradation of pollutants and broadens the range of application of SO4•--based AOP technology.


Subject(s)
Cyclodextrins , Environmental Pollutants , Water Pollutants, Chemical , Bismuth , Cellulose , Light , Oxidation-Reduction , Peroxides , Water , Water Pollutants, Chemical/analysis
18.
Sci Total Environ ; 808: 151892, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34826470

ABSTRACT

Poyang Lake is the first freshwater lake in China, which is an important drinking water source. In recent years, industrial pollution has led to the increased phthalate acid esters (PAEs) in Poyang Lake. PAEs are a class of typical endocrine disruptors that can accumulate in organisms and interfere with their secretion systems. Thus, the accurate determination of PAEs in Poyang Lake is important for health risk prediction and the development of corresponding control means. Monitoring organic pollutants in water using the diffusive gradient in thin films technique (DGT) has attracted much attention due to more accuracy and convenience than the traditional methods. This study used an inexpensive amphiphilic cyclodextrin polymer (PBCD) as the sorbent for the binding gel. This new binding gel has an ultra-high specific surface area and excellent adsorption performance. Diffusion coefficients of the five PAEs were determined, and the performance of DGT such as adsorption capacity and deployment time (1-4 days) was tested using five PAEs as models. The assembled PBCD-DGT was used to examine the performance in a complex simulated water environment. The sampling capability of PBCD-DGT was verified in Yangshan Lake, and a large-scale field application was conducted in Poyang Lake basin. The results of 11 sampling points showed that the concentration ranges of dimethyl phthalate, diethyl phthalate, diallyl phthalate, dipropyl phthalate, and dibutyl phthalate were 434-2594 ng/L, 40-314 ng/L, 80-527 ng/L, 45-308 ng/L, and ND-182 ng/L, respectively. The health risk index (HI) and ecological risk quotient (RQ) values of PAEs in the Poyang Lake watershed were far below 1, indictating a lower health and ecological risk. Considering that PAEs are bioaccumulative and persistent, it is very necessary to continue to pay attention to its pollution status and health and ecological risk changes in Poyang Lake Basin in the future.


Subject(s)
Drinking Water , Phthalic Acids , Water Pollutants, Chemical , Cellulose , China , Cyclodextrins , Dibutyl Phthalate/analysis , Environmental Monitoring , Esters/analysis , Lakes , Phthalic Acids/analysis , Risk Assessment , Technology , Water Pollutants, Chemical/analysis
19.
J Hazard Mater ; 408: 124430, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33176958

ABSTRACT

A 180-day incubation study was conducted to evaluate the effects of risk elements (REs) on organic carbon use and microbial activities in organic soils in the Arctic during the summer snowmelt period. Soils were artificially spiked with Cd, Pb, Cr, Ni, Cu, As, and a combination of these REs according to the levels measured in Arctic soils from REs-polluted industrial sites. During the incubation period, microbial activities and microbial biomass carbon (MBC) formation were inhibited, and microbial quotient (qCO2) values were relatively high in the spiked soils indicating that more energy was used by microbes for maintenance under REs stress. Meanwhile, microbial metabolism was significantly restrained. Microbial Specific phospholipid fatty acids (PLFAs) were reduced in RE spiked soils relative to the control, especially in the As- and multi-RE-spiked soils. The abundance of both fungi and bacteria was reduced in response to RE amendments by 14-24% and 1-55%, respectively. PLFA biomarkers indicated a shift in soil microbial community structure and activities influenced by REs, consequently having a negative effect on soil organic carbon degradation. This study addresses the knowledge gap regarding the alternation of biochemical reactions in Arctic soils under anthropogenic REs with relevant contamination levels.


Subject(s)
Soil Pollutants , Soil , Biomass , Carbon , Fungi , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
20.
Environ Sci Technol ; 54(11): 6610-6620, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32252527

ABSTRACT

The fractions transformation and dissipation mechanism of Dechlorane Plus (DP) in the rhizosphere of soil-plant system were investigated and characterized by a 150-day experiment using a rhizobox system. The depuration, accumulation, and translocation of DP in rice plants were observed. The contributions of plant uptake, microbial degradation, and bound-residue formation to DP dissipation under the rhizosphere effect were modeled and quantified. The gradients of DP concentrations correlated well with microbial biomass in the rhizosphere (R2 = 0.898). The rhizosphere facilitated the bioavailability of DP (excitation) and modified the bound-residue formation of DP (aging). DP concentrations in roots were positively correlated with the labile fraction of DP in soil (R2 = 0.852-0.961). There were spatiotemporal variations in the DP fractions. Dissolved and soil organic carbon were important influences on fraction transformation. Contributions to total DP dissipation were in the following ranges: microbial degradation (8.33-54.14%), bound-residue formation (3.64-16.43%), and plant uptake (0.54-3.85%). With all of these processes operating, the half-life of DP in the rhizosphere was 105 days. The stereoselectivity of DP isomers in both rice and DP fractions in soil were observed, suggesting a link between stereoselective bioaccumulation of DP in terrestrial organisms and dissipation pathways in soil.


Subject(s)
Hydrocarbons, Chlorinated , Soil Pollutants , Carbon , Hydrocarbons, Chlorinated/analysis , Plant Roots/chemistry , Polycyclic Compounds , Rhizosphere , Soil , Soil Microbiology , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...