Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Contam Hydrol ; 259: 104254, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37826885

ABSTRACT

Mining activities have long-term impacts on the groundwater of surrounding areas and deserve in-depth analysis and study. Herein, the geochemical mechanisms of acid mine drainage (AMD)-affected groundwaters were examined, and groundwater quality was assessed through water quality indices. 15 water samples from 7 domestic and 4 groundwater monitoring wells were tested for physical and chemical parameters in 2022, and multivariate statistical analysis was carried out with monitoring data from 21 domestic wells in 2010. The groundwater chemical composition varied from a predominantly Ca-HCO3 type in 2010 to a Ca-SO4 type in 2022. The isotopic values of δ18O and δD indicate that groundwater has not been significantly affected by evaporation. Changes in groundwater sulfate and total dissolved solids (TDS) levels over the twelve-year period confirmed the AMD infiltration impact on groundwater quality. The groundwater chemical properties changed more slowly than those of surface waters affected by AMD based on a cumulative increase in sulfate concentration of 29.94 mg/L. Changes in groundwater quality were investigated, namely, the spatiotemporal distribution of potentially toxic elements (PTEs), including Fe, Mn, Cd, Pb, and As. Mn concentrations in upstream groundwater areas near the mine decreased by 61.8% between 2010 and 2022. Conversely, groundwater in midstream areas had Mn concentrations of 2.25 mg/L and arsenic concentrations of 11.8 µg/L, both exceeding the WHO, 2022 standard. According to multivariate statistical analysis, Mn, Cd, and Pb originated from polymetallic minerals, whereas As was likely derived from the reduction of Fe/Mn hydroxyl oxides. AMD remediation improved contaminated upstream groundwater quality over 12 years, with a 36.8% improvement in WQI values. PTE distribution determined water quality changes; therefore, PTE contamination should be treated in mid- and downstream regions while contaminated groundwater should be treated upstream.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Water Pollutants, Chemical/analysis , Cadmium/analysis , Lead/analysis , Groundwater/chemistry , Sulfates , China
2.
Appl Opt ; 61(23): 6677-6689, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36255745

ABSTRACT

This paper presents a robust phase unwrapping algorithm based on a particle-Kalman filter for wrapped fringe patterns by combining a particle filter and an extended Kalman filter, which formulates the phase unwrapping problem of wrapped fringe patterns as an optimal state estimation problem under the frame of the particle-Kalman filter. First, a state space equation for state variables is extended to the second order of Taylor series, and a local phase gradient estimator based on a modified matrix pencil model is used to obtain the first-order and second-order phase gradient information required by the extended state space equation, which is conducive to enhancing the phase unwrapping accuracy of the proposed procedure. Second, the initial estimate of unwrapped phase is obtained through applying an efficient phase unwrapping program based on a particle filter to unwrap noisy wrapped pixels. Finally, the initial estimate of unwrapped phase obtained by the particle filter is taken as the predicted estimate of state variables and further processed by the extended Kalman filter to obtain the final estimate of unwrapped phase. In addition, an efficient quality-guided strategy that has been demonstrated well is used to guarantee that the particle-Kalman filter efficiently and accurately unwraps wrapped pixels along a suitable path. Results obtained with synthetic data and experimental data demonstrate the effectiveness of the proposed method and show that this new approach can obtain more acceptable solutions from noisy wrapped fringe patterns, with respect to some of the most commonly used methods.

3.
Appl Opt ; 61(23): 6861-6870, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36255766

ABSTRACT

To address the problem of phase unwrapping for interferograms, a deep learning (DL) phase-unwrapping method based on adaptive noise evaluation is proposed to retrieve the unwrapped phase from the wrapped phase. First, this method uses a UNet3+ as the skeleton and combines with a residual neural network to build a network model suitable for unwrapping wrapped fringe patterns. Second, an adaptive noise level evaluation system for interferograms is designed to estimate the noise level of the interferograms by integrating phase quality maps and phase residues of the interferograms. Then, multiple training datasets with different noise levels are used to train the DL network to achieve the trained networks suitable for unwrapping interferograms with different noise levels. Finally, the interferograms are unwrapped by the trained networks with the same noise levels as the interferograms to be unwrapped. The results with simulated and experimental interferograms demonstrate that the proposed networks can obtain the popular unwrapped phase from the wrapped phase with different noise levels and show good robustness in the experiments of phase unwrapping for different types of fringe patterns.


Subject(s)
Algorithms , Deep Learning
4.
Opt Express ; 30(11): 18392-18401, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221641

ABSTRACT

We propose a bi-layer transmissive metasurface to obtain linear-to-circular polarization conversion in a wideband. The unit cell of each metasurface layer, which has identical configuration, consists of a Jerusalem-cross-like resonator and a metal strip. A universal equivalent circuit model is employed to guide the design of the polarizer. By analyzing the circuit parameters of the equivalent circuit, four metal strips are symmetrically inserted in each unit cell to broaden the bandwidth of linear-to-circular polarization conversion. Numerical and experimental results show that the polarizer can convert a linearly polarized wave into a circularly polarized wave in a wideband from 6.1 GHz to 12.6 GHz. Compared to the reported designs, the proposed polarization converter has advantages of ultrathin thickness and ultrawideband, and hence can be used in many applications, such as antennas and remote sensors.

5.
Sensors (Basel) ; 23(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616631

ABSTRACT

In this paper, the problem of actuator and sensor faults of a quadrotor unmanned aerial vehicle (QUAV) system is studied. In the system fault model, time delay, nonlinear term, and disturbances of QUAV during the flight are considered. A fault estimation algorithm based on an intermediate observer is proposed. To deal with a single actuator fault, an intermediate variable is introduced, and the intermediate observer is designed for the system to estimate fault. For simultaneous actuator and sensor faults, the system is first augmented, and then two intermediate variables are introduced, and an intermediate observer is designed for the augmented system to estimate the system state, faults, and disturbances. The Lyapunov-Krasovskii functional is used to prove that the estimation error system is uniformly eventually bounded. The simulation results verify the feasibility and effectiveness of the proposed fault estimation method.

6.
Appl Opt ; 60(22): 6648-6658, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34612908

ABSTRACT

A robust phase unwrapping algorithm based on a rank information filter is proposed to retrieve the unambiguous unwrapped phase from noisy wrapped phase images. First, a recursive phase unwrapping program, based on a rank information filter, is proposed to transform the problem of phase unwrapping for wrapped phase into the problem of the state estimation for state variables under the framework of a rank information filter, where a local phase gradient estimator based on the amended matrix pencil model (AMPM) is used to obtain phase gradient information required by the recursive phase unwrapping program. Second, an efficient path-following strategy based on heap-sort is used to guide the phase unwrapping path, which ensures that the recursive phase unwrapping program based on a rank information filter unwraps wrapped phase images along the path from high-quality pixels to low-quality pixels. Finally, the results obtained from synthetic data and experimental measured data demonstrate the effectiveness of the proposed method and show this method can obtain robust solutions from noisy wrapped phase images.

7.
Chemosphere ; 280: 130743, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33975235

ABSTRACT

Thallium (Tl) commonly occurs in shallow groundwater affected by acid mine drainage (AMD); however, our knowledge of the occurrence of Tl in shallow groundwater is limited. This study observes that the shallow groundwater in an AMD-impacted area in Southern China contains an elevated Tl concentration (22 µg/L) under the oxidizing conditions and a low Tl concentration (<1 µg/L) in the reducing environment. The groundwater Tl concentration is positively correlated with oxidation-reduction potential (Eh) and negatively correlated with Cl content. The modelling results of the Tl species demonstrate that Tl+, TlSO4-, TlCl, and TlNO3 are the main forms of Tl in groundwater. Tl may precipitate as Tl(OH)3 under weakly acidic to alkaline conditions. Drill-core analysis of wells indicates that the Tl content in the vadose zone is equal to the background soil Tl content under oxidizing conditions. However, under artificial reducing conditions, the Tl content at the 3-4 m depth below the groundwater level ranges from 1.6 to 3.5 µg/g. This finding demonstrates that Tl solute in groundwater migrates into the aquifer when redox conditions change. Mn-oxides and illite in the weak permeable aquifer are the key minerals for Tl adsorption; some major sites of illite start to uptake Tl from pH 8.0. This study highlights not only the geochemical distribution of Tl in groundwater but also the influences of changes in redox conditions caused by human activities on Tl enrichment in groundwater. Enhancing our understanding of the aqueous geochemistry of Tl is of significance for the prevention and control of Tl pollution.


Subject(s)
Groundwater , Water Pollutants, Chemical , China , Environmental Monitoring , Humans , Mining , Soil , Thallium/analysis , Water Pollutants, Chemical/analysis
8.
Bull Environ Contam Toxicol ; 106(2): 349-354, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33258968

ABSTRACT

To investigate mangroves of different land use types in Nansha county, China, we analyzed the corresponding N2O and CH4 emissions, water temperature, salinity, acidity and alkalinity, dissolved oxygen, redox potential, nitrate, nitrite, ammonia nitrogen, and organic matter at five sites. The removal rates of NO2-, NO3-, and NH4+ in mangrove wetlands were 43.6%, 41.2%, and 65.0%; however, CH4 and N2O emissions of mangrove affected by shrimp ponds are 2-3 times and 3-9 times more high than other wetlands. These results showed that, although mangrove wetlands can significantly reduce N, P, and other nutrient elements in shrimp pond wastewater, they can also significantly increase N2O and CH4 emissions. This indicates that mangrove wetlands should be used with caution for the treatment of shrimp pond wastewater.


Subject(s)
Water Purification , Wetlands , Animals , China , Nitrogen/analysis , Nitrous Oxide/analysis , Ponds
9.
Opt Express ; 27(7): 9906-9924, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045138

ABSTRACT

This paper presents a new phase unwrapping algorithm for wrapped phase fringes through combining a cubature information particle filter with an efficient local phase gradient estimator and an efficient quality-guided strategy based on heap-sort. The cubature information particle filter that not only is independent from noise statistics but also is not constrained by the nonlinearity of the model constructed is applied to retrieve unambiguous phase from modulus 2π wrapped fringe patterns through constructing a recursive cubature information particle filtering phase unwrapping procedure to perform simultaneously phase unwrapping and noise filtering for the first time to our knowledge, which can be expected to obtain more robust solutions from wrapped phase fringes. Phase gradient estimate is one of the key steps in almost all phase unwrapping algorithms and is directly related to the precision and the efficiency of phase unwrapping procedure. Accordingly, an efficient local phase gradient estimator that is more efficient than ones published previously is deduced to obtain phase gradient information required by the proposed algorithm, which can drastically decrease time consumption of unwrapping procedure and drastically improve the efficiency of the algorithm. The efficient quality-guided strategy based on heap-sort guarantees that the proposed algorithm efficiently unwraps wrapped pixels along the path from the high-reliance regions to the low-reliance regions of wrapped phase images. In addition, the accelerated version of the proposed algorithm is further developed through combing with reversible modulo wavelet operators to solve phase unwrapping problem of wrapped phase images in wavelet transform domain, which can reduce the amount of wrapped pixels that need to be unwrapped, and can further decrease time consumption of unwrapping procedure performing on wrapped phase images. This algorithm and its accelerated version under the frame of wavelet transform are demonstrated with various types of wrapped phase images, showing acceptable solutions.

10.
Appl Opt ; 56(34): 9423-9434, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29216055

ABSTRACT

This paper proposes a new phase unwrapping (PU) algorithm based on an unscented information filter for interferometric fringes. The proposed algorithm is the result of combining an unscented information filter with a Levenberg-Marquardt method, a robust phase gradient estimator called the amended matrix pencil model, and an efficient quality-guided strategy based on heapsort. The unscented information filter, a new type of filter that has recently been well applied to traditional nonlinear object tracking fields, is introduced to estimate the unambiguous unwrapped phase of wrapped phase images for the first time, to the best of our knowledge. First, a recursive PU procedure based on an unscented information filter is established to perform PU and noise filtering at the same time by combining the unscented information filter and the amended matrix pencil model, where the amended matrix pencil model is applied to acquire phase gradient information needed for the recursive PU procedure. Second, the above recursive PU procedure is further optimized to improve the accuracy of the phase estimate by inserting the Levenberg-Marquardt method. This is also the first time that the Levenberg-Marquardt method is combined with the unscented information filter for the unwrapping of interferometric fringes, to the best of our knowledge. Finally, the efficient quality-guided strategy based on heapsort is used to efficiently route the path of the unwrapping procedure and to guide the proposed method to efficiently unwrap wrapped pixels along the path from the high-reliance region to the low-reliance region of the wrapped fringes. Results obtained with synthetic data and real data show more acceptable solutions with the proposed method, compared to some of the most used algorithms.

11.
Environ Sci Pollut Res Int ; 24(3): 3131-3141, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27858274

ABSTRACT

Guiyu is a well-known electronic waste dismantling and recycling town in south China. Concentrations and distribution of the 21 mineral elements and 16 polycyclic aromatic hydrocarbons (PAHs) collected there were evaluated. Principal component analyses (PCA) applied to the data matrix of PAHs in the soil extracted three major factors explaining 85.7% of the total variability identified as traffic emission, coal combustion, and an unidentified source. By using metallic or metalloid element concentrations as variables, five principal components (PCs) were identified and accounted for 70.4% of the information included in the initial data matrix, which can be denoted as e-waste dismantling-related contamination, two different geological origins, anthropogenic influenced source, and marine aerosols. Combining the 21 metallic and metalloid element datasets with the 16 PAH concentrations can narrow down the coarse source and decrease the unidentified contribution to soil in the present study and therefore effectively assists the source identification process.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Recycling , Soil Pollutants , China , Coal , Electronic Waste , Soil
12.
Opt Express ; 24(17): 18872-97, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27557170

ABSTRACT

A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.

13.
Ecotoxicology ; 25(4): 646-54, 2016 May.
Article in English | MEDLINE | ID: mdl-26846211

ABSTRACT

Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.


Subject(s)
Biodegradation, Environmental , Edetic Acid/chemistry , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Chelating Agents , Eucalyptus/physiology , Metals, Heavy/analysis , Metals, Heavy/chemistry , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry
14.
PLoS One ; 10(10): e0141059, 2015.
Article in English | MEDLINE | ID: mdl-26492525

ABSTRACT

The historically-famous Lotus Fortress site, a deep 1.5-3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park.


Subject(s)
Conservation of Natural Resources , Dinosaurs/classification , Dinosaurs/physiology , Extremities/physiology , Locomotion/physiology , Animals , China , Dinosaurs/anatomy & histology , Extremities/anatomy & histology , Geological Phenomena , Models, Biological , Paleontology
15.
Bull Environ Contam Toxicol ; 94(3): 321-5, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25543544

ABSTRACT

The objective of this research was to determine the phytoremediation potential of Eucalyptus globulus in Cd contaminated soil through two different harvest methods. Although replanting is more expensive than coppicing and produces less aboveground biomass, more Cd can be removed from the soil with roots removal at each harvest as the E. globulus absorbs vast majority of heavy metals in non-metabolically active parts like roots. Despite the higher cost of replanting in a single harvest, when phytoremediation efficiency and total duration are considered as important factors, the replanting treatment should be recommended as an appropriate method which can decrease the phytoremediation time obviously.


Subject(s)
Cadmium/metabolism , Eucalyptus/metabolism , Soil Pollutants/analysis , Biodegradation, Environmental , Biomass , Cadmium/analysis , Cadmium/chemistry , Environmental Restoration and Remediation/methods , Eucalyptus/growth & development , Plant Roots/chemistry , Soil Pollutants/metabolism
16.
Appl Opt ; 53(18): 4049-60, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24979440

ABSTRACT

This paper presents an enhanced phase unwrapping algorithm by combining an unscented Kalman filter, an enhanced local phase gradient estimator based on an amended matrix pencil model, and a path-following strategy. This technology is able to accurately unwrap seriously noisy wrapped phase images by applying the unscented Kalman filter to simultaneously perform noise suppression and phase unwrapping along the path from the high-quality region to the low-quality region of the wrapped phase images. Results obtained with synthetic data and real data validate the effectiveness of the proposed method and show improved performance of this new algorithm with respect to some of the most used algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...