Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Neuroeng Rehabil ; 21(1): 77, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745227

ABSTRACT

BACKGROUND: Over 80% of patients with stroke experience finger grasping dysfunction, affecting independence in activities of daily living and quality of life. In routine training, task-oriented training is usually used for functional hand training, which may improve finger grasping performance after stroke, while augmented therapy may lead to a better treatment outcome. As a new technology-supported training, the hand rehabilitation robot provides opportunities to improve the therapeutic effect by increasing the training intensity. However, most hand rehabilitation robots commonly applied in clinics are based on a passive training mode and lack the sensory feedback function of fingers, which is not conducive to patients completing more accurate grasping movements. A force feedback hand rehabilitation robot can compensate for these defects. However, its clinical efficacy in patients with stroke remains unknown. This study aimed to investigate the effectiveness and added value of a force feedback hand rehabilitation robot combined with task-oriented training in stroke patients with hemiplegia. METHODS: In this single-blinded randomised controlled trial, 44 stroke patients with hemiplegia were randomly divided into experimental (n = 22) and control (n = 22) groups. Both groups received 40 min/day of conventional upper limb rehabilitation training. The experimental group received 20 min/day of task-oriented training assisted by a force feedback rehabilitation robot, and the control group received 20 min/day of task-oriented training assisted by therapists. Training was provided for 4 weeks, 5 times/week. The Fugl-Meyer motor function assessment of the hand part (FMA-Hand), Action Research Arm Test (ARAT), grip strength, Modified Ashworth scale (MAS), range of motion (ROM), Brunnstrom recovery stages of the hand (BRS-H), and Barthel index (BI) were used to evaluate the effect of two groups before and after treatment. RESULTS: Intra-group comparison: In both groups, the FMA-Hand, ARAT, grip strength, AROM, BRS-H, and BI scores after 4 weeks of treatment were significantly higher than those before treatment (p < 0.05), whereas there was no significant difference in finger flexor MAS scores before and after treatment (p > 0.05). Inter-group comparison: After 4 weeks of treatment, the experimental group's FMA-Hand total score, ARAT, grip strength, and AROM were significantly better than those of the control group (p < 0.05). However, there were no statistically significant differences in the scores of each sub-item of the FMA-Hand after Bonferroni correction (p > 0.007). In addition, there were no statistically significant differences in MAS, BRS-H, and BI scores (p > 0.05). CONCLUSION: Hand performance improved in patients with stroke after 4 weeks of task-oriented training. The use of a force feedback hand rehabilitation robot to support task-oriented training showed additional value over conventional task-oriented training in stroke patients with hand dysfunction. CLINICAL TRIAL REGISTRATION INFORMATION: NCT05841108.


Subject(s)
Hand Strength , Hemiplegia , Robotics , Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Male , Female , Middle Aged , Robotics/instrumentation , Hand Strength/physiology , Hemiplegia/rehabilitation , Hemiplegia/physiopathology , Hemiplegia/etiology , Aged , Single-Blind Method , Stroke/complications , Stroke/physiopathology , Fingers/physiology , Fingers/physiopathology , Hand/physiopathology , Adult , Feedback, Sensory/physiology , Treatment Outcome , Recovery of Function
3.
Front Biosci (Landmark Ed) ; 29(3): 130, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38538268

ABSTRACT

BACKGROUND: The study on Head and Neck Squamous Cell Carcinoma (HNSCC), a prevalent and aggressive form of head and neck cancer, focuses on the often-overlooked role of soluble mediators. The objective is to leverage a transcriptome-based risk analysis utilizing soluble mediator-related genes (SMRGs) to provide novel insights into prognosis and immunotherapy efficacy in HNSCC patients. METHODS: We analyzed the expression and prognostic significance of 10,859 SMRGs using 502 HNSCC and 44 normal samples from the TCGA-HNSC cohort in The Cancer Genome Atlas (TCGA). The samples were divided into training and test sets in a 7:3 ratio, with an additional external validation using 40 tumor samples from the International Cancer Genome Consortium (ICGC). Key differentially expressed genes (DEGs) with prognostic significance were identified through univariate and Lasso-Cox regression analyses. A prognostic model based on 20 SMRGs was developed using Lasso and multivariate Cox regression. We assessed the clinical outcomes and immune status in high-risk (HR) and low-risk (LR) HNSCC patients utilizing the BEST databases and single-sample Gene Set Enrichment Analysis (ssGSEA). RESULTS: The 20 SMRGs were crucial in predicting the prognosis of HNSCC, with the SMRG signature emerging as an independent prognostic indicator. Patients classified in the HR group exhibited poorer outcomes compared to those in the LR group. A nomogram, integrating clinical characteristics and risk scores, demonstrated substantial prognostic value. Immunotherapy appeared to be more effective in the LR group, possibly attributed to enhanced immune infiltration and expression of immune checkpoints. CONCLUSIONS: The model based on soluble mediator-associated genes offers a fresh perspective for assessing the pre-immune efficacy and showcases robust predictive capabilities. This innovative approach holds significant promise in advancing the field of precision immuno-oncology research, providing valuable insights for personalized treatment strategies in HNSCC.


Subject(s)
Head and Neck Neoplasms , Humans , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Risk Factors , Gene Expression , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy
4.
Front Pharmacol ; 14: 1264345, 2023.
Article in English | MEDLINE | ID: mdl-37822877

ABSTRACT

Background: Uveal melanoma (UVM) is a primary intraocular malignancy that poses a significant threat to patients' visual function and life. The basement membrane (BM) is critical for establishing and maintaining cell polarity, adult function, embryonic and organ morphogenesis, and many other biological processes. Some basement membrane protein genes have been proven to be prognostic biomarkers for various cancers. This research aimed to develop a novel risk assessment system based on BMRGs that would serve as a theoretical foundation for tailored and accurate treatment. Methods: We used gene expression profiles and clinical data from the TCGA-UVM cohort of 80 UVM patients as a training set. 56 UVM patients from the combined cohort of GSE84976 and GSE22138 were employed as an external validation dataset. Prognostic characteristics of basement membrane protein-related genes (BMRGs) were characterized by Lasso, stepwise multifactorial Cox. Multivariate analysis revealed BMRGs to be independent predictors of UVM. The TISCH database probes the crosstalk of BMEGs in the tumor microenvironment at the single-cell level. Finally, we investigated the function of ITGA5 in UVM using multiple experimental techniques, including CCK8, transwell, wound healing assay, and colony formation assay. Results: There are three genes in the prognostic risk model (ADAMTS10, ADAMTS14, and ITGA5). After validation, we determined that the model is quite reliable and accurately forecasts the prognosis of UVM patients. Immunotherapy is more likely to be beneficial for UVM patients in the high-risk group, whereas the survival advantage may be greater for UVM patients in the low-risk group. Knockdown of ITGA5 expression was shown to inhibit the proliferation, migration, and invasive ability of UVM cells in vitro experiments. Conclusion: The 3-BMRGs feature model we constructed has excellent predictive performance which plays a key role in the prognosis, informing the individualized treatment of UVM patients. It also provides a new perspective for assessing pre-immune efficacy.

5.
Front Immunol ; 14: 1181467, 2023.
Article in English | MEDLINE | ID: mdl-37475857

ABSTRACT

Background: The primary pathogenic cause of tooth loss in adults is periodontitis, although few reliable diagnostic methods are available in the early stages. One pathological factor that defines periodontitis pathology has previously been believed to be the equilibrium between inflammatory defense mechanisms and oxidative stress. Therefore, it is necessary to construct a model of oxidative stress-related periodontitis diagnostic markers through machine learning and bioinformatic analysis. Methods: We used LASSO, SVM-RFE, and Random Forest techniques to screen for periodontitis-related oxidative stress variables and construct a diagnostic model by logistic regression, followed by a biological approach to build a Protein-Protein interaction network (PPI) based on modelled genes while using modelled genes. Unsupervised clustering analysis was performed to screen for oxidative stress subtypes of periodontitis. we used WGCNA to explore the pathways correlated with oxidative stress in periodontitis patients. Networks. Finally, we used single-cell data to screen the cellular subpopulations with the highest correlation by scoring oxidative stress genes and performed a proposed temporal analysis of the subpopulations. Results: We discovered 3 periodontitis-associated genes (CASP3, IL-1ß, and TXN). A characteristic line graph based on these genes can be helpful for patients. The primary hub gene screened by the PPI was constructed, where immune-related and cellular metabolism-related pathways were significantly enriched. Consistent clustering analysis found two oxidative stress categories, with the C2 subtype showing higher immune cell infiltration and immune function ratings. Therefore, we hypothesized that the high expression of oxidative stress genes was correlated with the formation of the immune environment in patients with periodontitis. Using the WGCNA approach, we examined the co-expressed gene modules related to the various subtypes of oxidative stress. Finally, we selected monocytes for mimetic time series analysis and analyzed the expression changes of oxidative stress genes with the mimetic time series axis, in which the expression of JUN, TXN, and IL-1ß differed with the change of cell status. Conclusion: This study identifies a diagnostic model of 3-OSRGs from which patients can benefit and explores the importance of oxidative stress genes in building an immune environment in patients with periodontitis.


Subject(s)
Computational Biology , Oxidative Stress , Adult , Humans , Oxidative Stress/genetics , Cluster Analysis , Gene Regulatory Networks , Machine Learning
6.
BMC Oral Health ; 23(1): 464, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422617

ABSTRACT

BACKGROUND: Oral lichen planus (OLP) is a local autoimmune disease induced by T-cell dysfunction that frequently affects middle-aged or elderly people, with a higher prevalence in women. CD8 + T cells, also known as killer T cells, play an important role in the progression and persistence of OLP. In order to identify different OLP subtypes associated with CD8 + T cell pathogenesis, consensus clustering was used. METHODS: In this study, we preprocessed and downscaled the OLP single-cell dataset GSE211630 cohort downloaded from Gene Expression Omnibus (GEO) to finally obtain the marker genes of CD8 + T cells. Based on the expression of marker genes, we classified OLP patients into CMGs subtypes using unsupervised clustering analysis. The gene expression profiles were analyzed by WGCNA using the "WGCNA" R package based on the clinical disease traits and typing results, and 108 CD8 + T-cell related OLP pathogenicity-related genes were obtained from the intersection. Patients were once again classified into gene subtypes based on intersection gene expression using unsupervised clustering analysis. RESULTS: After obtaining the intersecting genes of CD8 + T cells related to pathogenesis, OLP patients can be precisely classified into two different subtypes based on unsupervised clustering analysis, and subtype B has better immune infiltration results, providing clinicians with a reference for personalized treatment. CONCLUSIONS: Classification of OLP into different subtypes improve our current understanding of the underlying pathogenesis of OLP and provides new insights for future studies.


Subject(s)
Lichen Planus, Oral , Middle Aged , Aged , Humans , Female , Lichen Planus, Oral/genetics , Lichen Planus, Oral/metabolism , Single-Cell Gene Expression Analysis , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , RNA/metabolism
7.
Front Immunol ; 14: 1137025, 2023.
Article in English | MEDLINE | ID: mdl-37006257

ABSTRACT

Background: Hepatocellular carcinoma (HCC), the third most prevalent cause of cancer-related death, is a frequent primary liver cancer with a high rate of morbidity and mortality. T-cell depletion (TEX) is a progressive decline in T-cell function due to continuous stimulation of the TCR in the presence of sustained antigen exposure. Numerous studies have shown that TEX plays an essential role in the antitumor immune process and is significantly associated with patient prognosis. Hence, it is important to gain insight into the potential role of T cell depletion in the tumor microenvironment. The purpose of this study was to develop a trustworthy TEX-based signature using single-cell RNA-seq (scRNA-seq) and high-throughput RNA sequencing, opening up new avenues for evaluating the prognosis and immunotherapeutic response of HCC patients. Methods: The International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) databases were used to download RNA-seq information for HCC patients. The 10x scRNA-seq. data of HCC were downloaded from GSE166635, and UMAP was used for clustering descending, and subgroup identification. TEX-related genes were identified by gene set variance analysis (GSVA) and weighted gene correlation network analysis (WGCNA). Afterward, we established a prognostic TEX signature using LASSO-Cox analysis. External validation was performed in the ICGC cohort. Immunotherapy response was assessed by the IMvigor210, GSE78220, GSE79671, and GSE91061cohorts. In addition, differences in mutational landscape and chemotherapy sensitivity between different risk groups were investigated. Finally, the differential expression of TEX genes was verified by qRT-PCR. Result: 11 TEX genes were thought to be highly predictive of the prognosis of HCC and substantially related to HCC prognosis. Patients in the low-risk group had a greater overall survival rate than those in the high-risk group, according to multivariate analysis, which also revealed that the model was an independent predictor of HCC. The predictive efficacy of columnar maps created from clinical features and risk scores was strong. Conclusion: TEX signature and column line plots showed good predictive performance, providing a new perspective for assessing pre-immune efficacy, which will be useful for future precision immuno-oncology studies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , T-Cell Exhaustion , Single-Cell Gene Expression Analysis , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Prognosis , RNA , Tumor Microenvironment/genetics
8.
Front Immunol ; 14: 1091218, 2023.
Article in English | MEDLINE | ID: mdl-36969232

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is the most common head and neck cancer and is highly aggressive and heterogeneous, leading to variable prognosis and immunotherapy outcomes. Circadian rhythm alterations in tumourigenesis are of equal importance to genetic factors and several biologic clock genes are considered to be prognostic biomarkers for various cancers. The aim of this study was to establish reliable markers based on biologic clock genes, thus providing a new perspective for assessing immunotherapy response and prognosis in patients with HNSCC. Methods: We used 502 HNSCC samples and 44 normal samples from the TCGA-HNSCC dataset as the training set. 97 samples from GSE41613 were used as an external validation set. Prognostic characteristics of circadian rhythm-related genes (CRRGs) were established by Lasso, random forest and stepwise multifactorial Cox. Multivariate analysis revealed that CRRGs characteristics were independent predictors of HNSCC, with patients in the high-risk group having a worse prognosis than those in the low-risk group. The relevance of CRRGs to the immune microenvironment and immunotherapy was assessed by an integrated algorithm. Results: 6-CRRGs were considered to be strongly associated with HNSCC prognosis and a good predictor of HNSCC. The riskscore established by the 6-CRRG was found to be an independent prognostic factor for HNSCC in multifactorial analysis, with patients in the low-risk group having a higher overall survival (OS) than the high-risk group. Nomogram prediction maps constructed from clinical characteristics and riskscore had good prognostic power. Patients in the low-risk group had higher levels of immune infiltration and immune checkpoint expression and were more likely to benefit from immunotherapy. Conclusion: 6-CRRGs play a key predictive role for the prognosis of HNSCC patients and can guide physicians in selecting potential responders to prioritise immunotherapy, which could facilitate further research in precision immuno-oncology.


Subject(s)
Circadian Rhythm , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Prognosis , Circadian Rhythm/genetics , Immunotherapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Tumor Microenvironment
9.
Front Oncol ; 13: 1276715, 2023.
Article in English | MEDLINE | ID: mdl-38162499

ABSTRACT

Background: Clear cell renal carcinoma (ccRCC) stands as the prevailing subtype among kidney cancers, making it one of the most prevalent malignancies characterized by significant mortality rates. Notably,mitochondrial permeability transition drives necrosis (MPT-Driven Necrosis) emerges as a form of cell death triggered by alterations in the intracellular microenvironment. MPT-Driven Necrosis, recognized as a distinctive type of programmed cell death. Despite the association of MPT-Driven Necrosis programmed-cell-death-related lncRNAs (MPTDNLs) with ccRCC, their precise functions within the tumor microenvironment and prognostic implications remain poorly understood. Therefore, this study aimed to develop a novel prognostic model that enhances prognostic predictions for ccRCC. Methods: Employing both univariate Cox proportional hazards and Lasso regression methodologies, this investigation distinguished genes with differential expression that are intimately linked to prognosis.Furthermore, a comprehensive prognostic risk assessment model was established using multiple Cox proportional hazards regression. Additionally, a thorough evaluation was conducted to explore the associations between the characteristics of MPTDNLs and clinicopathological features, tumor microenvironment, and chemotherapy sensitivity, thereby providing insights into their interconnectedness.The model constructed based on the signatures of MPTDNLs was verified to exhibit excellent prediction performance by Cell Culture and Transient Transfection, Transwell and other experiments. Results: By analyzing relevant studies, we identified risk scores derived from MPTDNLs as an independent prognostic determinant for ccRCC, and subsequently we developed a Nomogram prediction model that combines clinical features and associated risk assessment. Finally, the application of experimental techniques such as qRT-PCR helped to compare the expression of MPTDNLs in healthy tissues and tumor samples, as well as their role in the proliferation and migration of renal clear cell carcinoma cells. It was found that there was a significant correlation between CDK6-AS1 and ccRCC results, and CDK6-AS1 plays a key role in the proliferation and migration of ccRCC cells. Impressive predictive results were generated using marker constructs based on these MPTDNLs. Conclusions: In this research, we formulated a new prognostic framework for ccRCC, integrating mitochondrial permeability transition-induced necrosis. This model holds significant potential for enhancing prognostic predictions in ccRCC patients and establishing a foundation for optimizing therapeutic strategies.

10.
Front Endocrinol (Lausanne) ; 13: 1056310, 2022.
Article in English | MEDLINE | ID: mdl-36568076

ABSTRACT

Background: Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signature based on sphingolipid metabolism genes (SMGs), thus providing a new perspective for assessing immunotherapy response and prognosis in patients with UVM. Methods: In this study, SMGs were used to classify UVM from the TCGA-UVM and GEO cohorts. Genes significantly associated with prognosis in UVM patients were screened using univariate cox regression analysis. The most significantly characterized genes were obtained by machine learning, and 4-SMGs prognosis signature was constructed by stepwise multifactorial cox. External validation was performed in the GSE84976 cohort. The level of immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy and immune checkpoint blockade (ICB) response in UVM patients was assessed by ImmuCellAI and TIP portals. Results: 4-SMGs were considered to be strongly associated with the prognosis of UVM and were good predictors of UVM prognosis. Multivariate analysis found that the model was an independent predictor of UVM, with patients in the low-risk group having higher overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores had good prognostic power. The high-risk group showed better results when receiving immunotherapy. Conclusions: 4-SMGs signature and nomogram showed excellent predictive performance and provided a new perspective for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology studies.


Subject(s)
Melanoma , Adult , Humans , Prognosis , Melanoma/genetics , Machine Learning , Sphingolipids
11.
Front Genet ; 13: 1010044, 2022.
Article in English | MEDLINE | ID: mdl-36406133

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common type of cancer worldwide. Its highly aggressive and heterogeneous nature and complex tumor microenvironment result in variable prognosis and immunotherapeutic outcomes for patients with HNSCC. Neurotrophic factor-related genes (NFRGs) play an essential role in the development of malignancies but have rarely been studied in HNSCC. The aim of this study was to develop a reliable prognostic model based on NFRGs for assessing the prognosis and immunotherapy of HNSCC patients and to provide guidance for clinical diagnosis and treatment. Methods: Based on the TCGA-HNSC cohort in the Cancer Genome Atlas (TCGA) database, expression profiles of NFRGs were obtained from 502 HNSCC samples and 44 normal samples, and the expression and prognosis of 2601 NFRGs were analyzed. TGCA-HNSC samples were randomly divided into training and test sets (7:3). GEO database of 97 tumor samples was used as the external validation set. One-way Cox regression analysis and Lasso Cox regression analysis were used to screen for differentially expressed genes significantly associated with prognosis. Based on 18 NFRGs, lasso and multivariate Cox proportional risk regression were used to construct a prognostic risk scoring system. ssGSEA was applied to analyze the immune status of patients in high- and low-risk groups. Results: The 18 NFRGs were considered to be closely associated with HNSCC prognosis and were good predictors of HNSCC. The multifactorial analysis found that the NFRGs signature was an independent prognostic factor for HNSCC, and patients in the low-risk group had higher overall survival (OS) than those in the high-risk group. The nomogram prediction map constructed from clinical characteristics and risk scores had good prognostic power. Patients in the low-risk group had higher levels of immune infiltration and expression of immune checkpoints and were more likely to benefit from immunotherapy. Conclusion: The NFRGs risk score model can well predict the prognosis of HNSCC patients. A nomogram based on this model can help clinicians classify HNSCC patients prognostically and identify specific subgroups of patients who may have better outcomes with immunotherapy and chemotherapy, and carry out personalized treatment for HNSCC patients.

12.
Cells ; 11(21)2022 10 31.
Article in English | MEDLINE | ID: mdl-36359832

ABSTRACT

In terms of mortality and survival, pancreatic cancer is one of the worst malignancies. Known as a unique type of programmed cell death, cuprotosis contributes to tumor cell growth, angiogenesis, and metastasis. Cuprotosis programmed-cell-death-related lncRNAs (CRLs) have been linked to PAAD, although their functions in the tumor microenvironment and prognosis are not well understood. This study included data from the TCGA-PAAD cohort. Random sampling of PAAD data was conducted, splitting the data into two groups for use as a training set and test set (7:3). We searched for differentially expressed genes that were substantially linked to prognosis using univariate Cox and Lasso regression analysis. Through the use of multivariate Cox proportional risk regression, a risk-rating system for prognosis was developed. Correlations between the CRL signature and clinicopathological characteristics, tumor microenvironment, immunotherapy response, and chemotherapy sensitivity were further evaluated. Lastly, qRT-PCR was used to compare CRL expression in healthy tissues to that in tumors. Some CRLs are thought to have strong correlations with PAAD outcomes. These CRLs include AC005332.6, LINC02041, LINC00857, and AL117382.1. The CRL-based signature construction exhibited outstanding predictive performance and offers a fresh approach to evaluating pre-immune effectiveness, paving the way for future studies in precision immuno-oncology.


Subject(s)
Apoptosis , Copper , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Apoptosis/genetics , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Microenvironment/genetics , Copper/metabolism
13.
Front Immunol ; 13: 1018685, 2022.
Article in English | MEDLINE | ID: mdl-36263048

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC), the most common head and neck cancer, is highly aggressive and heterogeneous, resulting in variable prognoses and immunotherapeutic outcomes. Natural killer (NK) cells play essential roles in malignancies' development, diagnosis, and prognosis. The purpose of this study was to establish a reliable signature based on genes related to NK cells (NRGs), thus providing a new perspective for assessing immunotherapy response and prognosis of HNSCC patients. Methods: In this study, NRGs were used to classify HNSCC from the TCGA-HNSCC and GEO cohorts. The genes were evaluated using univariate cox regression analysis based on the differential analysis of normal and tumor samples in TCGA-HNSCC conducted using the "limma" R package. Thereafter, we built prognostic gene signatures using LASSO-COX analysis. External validation was carried out in the GSE41613 cohort. Immunity analysis based on NRGs was performed via several methods, such as CIBERSORT, and immunotherapy response was evaluated by TIP portal website. Results: With the TCGA-HNSCC data, we established a nomogram based on the 17-NRGs signature and a variety of clinicopathological characteristics. The low-risk group exhibited a better effect when it came to immunotherapy. Conclusions: 17-NRGs signature and nomograms demonstrate excellent predictive performance and offer new perspectives for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology research.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Prognosis , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Killer Cells, Natural , Nomograms
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117517, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31521001

ABSTRACT

Alterations of the homeostasis balance of cysteine (Cys) are associated with a variety of diseases and cellular functions, and therefore, Cys dynamic real-time living cell intracellular imaging and quantification are important for understanding the pathophysiological processes. Thus, Cys probe that can permeate high efficiently is the first one to be affected. In fact, it is difficult for organic molecular probes to infiltrate cells because of the unique structure of the cell membrane. In this work, we found that probe containing-carboxyl just stagnated in cytomembrane due to carboxyl of probe and amino group of membrane protein forming peptide chains, nevertheless, the addition of NEM, improved membrane permeability by NEM reacting with sulfhydryl of membrane protein, which made probe permeate high efficiently and sequentially real-time detect the Cys in cytoplasm. It is the first time noted that NEM can regulate Cys probe containing-carboxyl for high efficient detection in cytoplasm. Additionally, probe was successfully applied to image Cys in mouse.


Subject(s)
Cysteine/analysis , Ethylmaleimide , Fluorescent Dyes , Animals , Cell Membrane Permeability , Computer Systems , Cysteine/metabolism , Cytoplasm/metabolism , Fluorescence , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Hep G2 Cells , Humans , Intravital Microscopy , Mice , Mice, Inbred BALB C , Molecular Structure , Optical Imaging , Sulfhydryl Reagents
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117148, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31141776

ABSTRACT

Fluorescence detection of sulfur dioxide has attracted great interest from researchers in recent years. Usually double bonds and aldehyde group were employed as reaction sites for sulfur dioxide. In this work, the double bond was linked with cyano and carboxyl group as dual electron-withdrawing to enhance the reaction reactivity between the probe and sulfite. Meanwhile, coumarin with good biocompatibility was introduced as fluorophore. Thus D-π-A form constructs intramolecular charge transfer (ICT), the probe has weak yellow fluorescence emission (565 nm), after addition reaction taking place between the probe and bisulfate, conjugated double bond is broken, the system showed a short-wavelength fluorescence emission (483 nm). All these realized a ratiometric fluorescence detection for bisulfate. The study found that dual electron-withdrawing groups enhanced the specificity and sensibility (with a low detection limit 82 nM) of the probe recognizing bisulfate. These excellent properties led directly to the use of probes to image sulfur dioxide in living cells. Further applications are still being on the way.


Subject(s)
Fluorescent Dyes/chemistry , Molecular Imaging/methods , Sulfur Dioxide/analysis , Acetates/chemistry , Coumarins/chemistry , Electrons , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Hydrogen-Ion Concentration , Limit of Detection , Sensitivity and Specificity , Solubility , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Sulfates/analysis , Sulfites/metabolism
16.
ACS Appl Mater Interfaces ; 9(28): 24005-24010, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28631480

ABSTRACT

A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO3/graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO3/TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO3. The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...